
Eberhard Karls Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät

Wilhelm-Schickard-Institut für Informatik

Master's Thesis in Media Informatics

UnicodeMath ⥅ MathML
Implementation of a UnicodeMath to
MathML Translator and its Integration
Into Markdeep

Noah Doersing

November 30, 2019

Reviewers: Prof. Dr. Torsten Grust

Database Systems Research Group

Wilhelm-Schickard-Institut für Informatik

Universität Tübingen

 Prof. Dr. Thomas Walter

Arbeitsbereich Informationsdienste & Direktor des ZDV

Wilhelm-Schickard-Institut für Informatik

Universität Tübingen

Noah Doersing ⁓ 1

ABSTRACT
While it is centered around the titular UnicodeMath to MathML translation (abbreviatory
UnicodeMathML), the work presented in this thesis is composed of multiple parts. They are
listed here in descending order of importance:

Conversion of UnicodeMath input into MathML for rendering (e.g., in Web browsers).

UnicodeMath is a linear encoding of math formulas that, in contrast to the more well-
known LaTeX, takes full advantage of Unicode's plethora of math symbols. For ex-
ample, the UnicodeMath expression a�n (composed of the three Unicode characters
U+0061 LATIN SMALL LETTER A, U+20D7 COMBINING RIGHT ARROW ABOVE, and U+207F SUPERSCRIPT LATIN SMALL LETTER N)
encodes .

MathML is a W3C standard that defines an XML-based encoding of math formulas.
Think HTML, but for math. Some browsers can render it natively, others need a readily
available JavaScript polyfill.

Integration of this JavaScript-based translator into Morgan McGuire's open-source
Markdown engine Markdeep to make UnicodeMath immediately usable in day-to-day
document authoring.

The guiding principle of this work was to only carry out minimally invasive changes
to the Markdeep source code.

In addition, the integration of the translator into arbitrary HTML documents was suc-
cessfully explored.

Implementation of a web-based UnicodeMathML playground.

Originally intended as a parser development aid, this tool enables writing of Unicode-
Math expressions with instant preview, character info, control word substitution,
math font selection, and other features.

During the thesis period, I have developed other Markdeep-adjacent tools. Although
not strictly related to the UnicodeMath to MathML translation, they were instrument-
al in producing both this document and a presentation on the subject:

markdeep-thesis for generating undergraduate and graduate theses such as this
one using Markdeep and Bindery (a JavaScript library for creating printable docu-
ments with HTML and CSS),
markdeep-slides for building presentation slides with Markdeep and presenting
them in the user's browser, and
markdeep-diagram-drafting-board for user-friendly authoring of ASCII art dia-
grams that Markdeep then converts to SVG drawings.

2

Noah Doersing ⁓ 3

⸻⸻
1 See https://casual-effects.com/markdeep/.
2 See https://evanbrooks.info/bindery/.
3 See https://fonts.google.com/specimen/PT+Serif.
4 See https://fonts.google.com/specimen/Poppins.
5 See https://typeof.net/Iosevka/.
6 See https://fonts.google.com/specimen/PT+Sans+Narrow.
7 See https://fonts.google.com/specimen/Aleo.
8 See https://fonts.adobe.com/fonts/teko.

NOTES
This document was generated using the custom-built tool markdeep-thesis (the imple-
mentation of which is touched upon in Section 6.2.1), which makes use of Markdeep and
Bindery .

Body text is set in PT Serif , headings utilize Poppins , code shines with Iosevka , refer-
ences to footnotes, figures, and sections are indicated with PT Sans Narrow , and Mark-
deep's .fancyquotes are made appropriately fancy using Aleo .

Some somewhat noteworthy notes on notation:

Unicode code points – along with their names – such as U+1F4A9 PILE OF POO, are set in the
tall, narrow font Teko as they can get rather long (the longest happens to be U+FBF9
ARABIC LIGATURE UIGHUR KIRGHIZ YEH WITH HAMZA ABOVE WITH ALEF MAKSURA ISOLATED FORM).
Paths of files, such as ☁/thesis/thesis.md.html, are usually denoted beginning with
U+2601 CLOUD. This symbol signifies the root directory of the unicodemathml repository.
All 154 mathematical expressions in this document have been written in Unicode-
Math, automatically translated to MathML by the translator discussed in this thesis,
and rendered using MathJax.
When referencing “Section … of the tech note”, I'm referring to Murray Sargent's Uni-
code Technical Note “UnicodeMath: A Nearly Plain-Text Encoding of Mathematics”
[Sargent16]. Similarly, “page … of the digital typography book” refers to Donald Knuth's
anthology of essays, articles, talks, and Q&A session transcripts released as “Digital
Typography” [Knuth99].
Instead of in typical inference rule notation, many kinds of transformations – such as
parsing (indicated by P below the arrow), translation and pretty-printing (T) and ren-
dering (R) – are expressed as follows. More details in Chapter 4.

α/β ⟶ fraction:
 symbol: "/"
 of: ⟬αᴾ, βᴾ⟭

⟶
<mfrac>
 <mrow>αᵀ</mrow>
 <mrow>βᵀ</mrow>
</mfrac>

⟶

1

2

3 4 5

6

7

8

P T R

https://casual-effects.com/markdeep/
https://evanbrooks.info/bindery/
https://fonts.google.com/specimen/PT+Serif
https://fonts.google.com/specimen/Poppins
https://typeof.net/Iosevka/
https://fonts.google.com/specimen/PT+Sans+Narrow
https://fonts.google.com/specimen/Aleo
https://fonts.adobe.com/fonts/teko
https://casual-effects.com/markdeep/
https://evanbrooks.info/bindery/
https://fonts.google.com/specimen/PT+Serif
https://fonts.google.com/specimen/Poppins
https://typeof.net/Iosevka/
https://fonts.google.com/specimen/PT+Sans+Narrow
https://fonts.google.com/specimen/Aleo
https://fonts.adobe.com/fonts/teko

4

Noah Doersing ⁓ 5

·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·

CONTENTS
1 Introduction
2 Background

2.1 Unicode
2.2 (Linear) Math Encodings
2.3 UnicodeMath
2.4 HTML, CSS, JavaScript, and Browsers
2.5 MathML

2.5.1 Browser Support
2.5.2 MathJax

2.6 Markdeep
2.7 Parser Generators

2.7.1 PEG.js
2.7.2 ANTLR

2.8 Prior and Related Work
3 Implementation Architecture

3.1 unicodemathml.pegjs
3.2 unicodemathml.js

3.2.1 Control Word Substitution
3.2.2 Astral Mapping
3.2.3 Parsing
3.2.4 Preprocessing
3.2.5 Translating
3.2.6 Pretty-printing

3.3 Notes on Modularization
4 Parsing UnicodeMath and Translating it Into MathML

4.1 Grammar
4.2 Operators
4.3 Equation Arrays & Matrices
4.4 n-ary Operations
4.5 Phantoms & Smashes
4.6 Fractions
4.7 Subscripts & Superscripts
4.8 Prescripts
4.9 Above/Below Scripts

7
11
11
14
16
18
20
21
22
24
25
25
29
30
31
31
32
32
33
33
34
35
36
36
39
40
49
50
52
53
54
56
58
60

6

·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·

4.10 Enclosures & Abstract Boxes
4.11 Horizontal Brackets
4.12 Roots
4.13 Functions
4.14 Text
4.15 Size Overrides
4.16 Non-standard Extensions: Color, Comments & Typewriter Font
4.17 Primes
4.18 Factorials
4.19 Atoms
4.20 Delimiters & Grouping

5 Integration into Markdeep and HTML
5.1 Naïve Markdeep Integration
5.2 Better Markdeep Integration
5.3 HTML Integration

6 Ancillary Work
6.1 UnicodeMathML Playground

6.1.1 Interface
6.1.2 Implementation

6.2 Markdeep-based Tools and Applications
6.2.1 markdeep-thesis
6.2.2 markdeep-slides
6.2.3 markdeep-diagram-drafting-board

6.3 Python Scripts
7 Evaluation

7.1 Challenges
7.1.1 Parser Generators
7.1.2 Emoji
7.1.3 Abstract Boxes
7.1.4 Equation Breaking and Alignment
7.1.5 Parsing Performance

7.2 Performance
7.3 Extensibility and Maintainability

8 Future Work
8.1 UnicodeMathML
8.2 UnicodeMathML Playground
8.3 Markdeep Integration
8.4 Grab Bag

60
62
63
63
64
65
66
67
68
69
72
75
76
77
80
81
81
83
84
85
85
87
88
89
91
91
91
94
95
95
95
97
98
99
99

100
101
101

Noah Doersing ⁓ 7

⸻⸻
1 See https://twitter.com/bphennessy/status/1147903246977179650.
2 See https://unicode.org/iuc/iuc29/bios.htm.

1
INTRODUCTION
“ you gotta hand it to the unicode consortium, no one quite opens a can of
worms like they do ”

— Brendan Hennessy

Although the above comment is about the politics of Unicode's flag emoji encoding and
operating system vendors' implementations thereof, it rings true even for such mundane
subjects as the encoding of mathematical formulas: Were it not for the valiant standardiz-
ation efforts of the Unicode consortium, this thesis could not have been written and I
would've saved myself a whole bunch of work.

Math typesetting and, by extension, the encoding of mathematical expression on the path
from the author's imagination to a rendered image on a screen or a piece of paper has
been an area of active development since the invention of the printing press. Among the
many approaches developed in recent decades (see Section 2.2), UnicodeMath stands out:

Spearheaded by Murray Sargent, a physics professor emeritus and more recently a “Mi-
crosoft [senior] software design engineer [...] who was [...] a key participant in the imple-
mentation of mathematics support in Microsoft products” [Beeton16] whose SCROLL lan-
guage, developed in the late '60s, was “the first language capable of ‘typesetting’ mathem-
atical equations on a computer” [Sargent06], UnicodeMath makes liberal use of Unicode

1

2

https://twitter.com/bphennessy/status/1147903246977179650
https://unicode.org/iuc/iuc29/bios.htm
https://twitter.com/bphennessy/status/1147903246977179650
https://unicode.org/iuc/iuc29/bios.htm

8 ⁓ Introduction

symbols (see Section 2.1) to encode mathematical concepts.

For example, the rendering equation, one of the fundamental equations in computer
graphics – it formally describes the light transport through surface points in three-dimen-
sional scenes – is written as

in the paper [Kajiya86] that introduced it. It can be expressed in UnicodeMath fairly human-
readably:

I(x,x') = g(x,x') [ε(x,x') + ∫_S▒ρ(x,x',x'')I(x',x'')ⅆx'']

When translated into Donald Knuth's (La)TeX, which is the most popular linear format for
math in use today, the same equation is a bit more verbose:

I(x,x') = g(x,x') \left[\epsilon(x,x') + \int_S \rho(x,x',x'')I(x',x'')
\,dx''\right]

And in MathML, an XML-based encoding of mathematics developed for the web (more de-
tails in Section 2.5), it's become completely unreadable for most people (but trivially easy to
parse for computers!):

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 <mi>𝐼</mi>
 <mfenced open="(" close=")">
 <mrow>
 <mi>𝑥</mi>
 <mo>,</mo>
 <msup>
 <mi>𝑥</mi>
 <mo>′</mo>
 </msup>
 </mrow>
 </mfenced>
 …
</math>

(That was just the bit before the equals sign – it doesn't get any less verbose later on in
the equation, either.)

“UnicodeMath is used for keyboard entry of mathematical expressions in Microsoft Word,
PowerPoint, OneNote and Excel.” [Sargent16] Through the work detailed in this thesis, Uni-
codeMath has also become applicable for encoding mathematical expressions in Markdeep
(see Section 2.6) and HTML documents. This work is divided into multiple aspects, contextu-
alized in Figure 1 on the next page, which will, as you progress through this document,
hopefully make more sense than it may presently.

Noah Doersing ⁓ 9

I N T E G R A T I O N U N I C O D E M A T H M L T Y P E S

Math zone marking

Math zone extraction String

Control word substitution
& astral mapping

Parsing

UnicodeMath
Preprocessing AST

Transformation

MathML AST

Pretty-printing

String
Substitution in DOM

DOM
Rendering Subtree

Figure 1: An overview of the UnicodeMathML pipeline.

This thesis is divided into several chapters:

First, I will attempt to bring you up to speed on the technologies I relied on in building
UnicodeMathML: Unicode, MathML, HTML, JavaScript, MathJax, Markdeep, and the pars-
er generators PEG.js and ANTLR. In this background chapter, an initial review of Uni-
codeMath and a short history of linear math encodings are given, as well. Finally, prior
and related work is discussed.

Before getting to the meat of this thesis, I will swiftly discuss the implementation archi-
tecture – basically the center and right columns of Figure 1. It helps to get an overview,
plus there are some aspects of it that are important, but can be ignored during parsing
and/or translation.

UnicodeMath's syntax is explored in greater detail in a chapter partially focused on pars-
ing UnicodeMath. Its details are explained in lockstep with a run through the PEG.js
grammar I wrote in order to generate a UnicodeMath parser. In the follow-up [Siracusa11]
sections, I will go over the abstract syntax tree (AST) that's built up during parsing, shin-
ing the light on one UnicodeMath construct at a time. Just after I handle the parsing of
each UnicodeMath construct, it's all about translating it into MathML – it makes more
sense to do this in an interleaved fashion rather than explaining parsing first, translating
second. As part of this, I will go into various MathML details and quirks as I describe the
transformation process.

10 ⁓ Introduction

With this main contribution of the thesis out of the way, I will next write about the Uni-
codeMathML pipeline's integration into Markdeep and HTML documents – there hap-
pen to be multiple ways of going about this, so I explored two of them. The left column of
Figure 1 provides an overview of the final implementation.

During the implementation of UnicodeMathML, I have developed a web app that eases in-
put of UnicodeMath expressions, with instant preview of the MathML translations of Uni-
codeMath expressions, as well as Unicode character information, control word substitu-
tion, math font selection, and other features. This UnicodeMathML playground is detailed
in a chapter on ancillary work, along with an overview of several Markdeep-based tools I
have built during the thesis period: a typesetting tool for theses such as this one, a tool
that turns a Markdeep document into presentation slides, and a diagram drawing aid. Fi-
nally, a set of Python utilities that implement minor Unicode-related data transformations
is discussed.

In the following chapter, I will give an evaluation of my work – I'll write about aspects
that were challenging to me before analyzing the performance of the UnicodeMath to
MathML translator.

Finally, some musings on potential future work – some smallish todos that I will likely
tackle in the coming weeks, along with big-ticket items that would be interesting to ex-
plore and/or nice to have, but which I might just leave up for grabs.

Noah Doersing ⁓ 11

2
BACKGROUND
This chapter serves to introduce the technologies used in this thesis, from Unicode all the
way to the parser generator ANTLR. For most of them, I will briefly summarize relevant
historical aspects, along with introductory examples where appropriate. A section on prior
and related work concluded this chapter.

2.1 UNICODE

“ We began Unicode with a simple goal: to unify the many hundreds of con-
�icting ways to encode characters, replacing them with a single, universal
standard. ”

— Mark Davis, President of the Unicode Consortium [Davis06]

In the 1980s, computers became smaller, less expensive, more usable for the layperson,
and thus more widespread. Combined with the proliferation of full-grown networking,
this presented some issues as different software stacks would try to talk to each other: A
textual message, encoded using whichever encoding Alice's computer used, might come
out garbled and utterly unreadable on Bob's end if his computer didn't support the original
encoding and instead used its own preferred decoding scheme to interpret the message.

For example, the Swedish word “Smörgås”, when encoded using the ISO 8859-1 standard
but interpreted as Mac Roman (the default encoding of the classic Mac OS), would decode
to “SmˆrgÂs”.

12 ⁓ Background

⸻⸻
1 See https://en.wikipedia.org/wiki/Mojibake.
2 In fact, when looking at a chart of all assigned Unicode code points, it appears to be dominated by Chinese and
Korean characters.
3 As a side note, this “variety of scripts, directions, and input methods [...] impose[s] tricky (and in some cases,
unsolved) problems on any [text] editor”: https://lord.io/blog/2019/text-editing-hates-you-too/
4 Except for a set of so-called CJK Ideographs in Plane 2 and, some control characters in Plane 14 and a large
Private Use Area encompassing Planes 15 and 16, none of which are relevant in the context of this thesis.
5 See https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols.
6 Interestingly, specific variations of some characters are missing in this block. This is because they had been
previously encoded in the BMP, and the Unicode consortium avoids encoding the same symbol twice or breaking
backwards compatibility. An example is ℎ, which one would expect to locate at U+1D455, sandwiched between U+1D454
MATHEMATICAL ITALIC SMALL G and U+1D456 MATHEMATICAL ITALIC SMALL I, but is actually encoded as U+210E PLANCK CONSTANT. See also:
https://stackoverflow.com/questions/47206070/why-are-there-holes-in-the-unicode-table. Similarly, Unicode
subscripts and superscripts can be found all over the place, see https://stackoverflow.com/a/17909597 and
https://en.wikipedia.org/wiki/Unicode_subscripts_and_superscripts.

This phenomenon is known as Mojibake (文字化け , “character transformation”) – one
can imagine that Asian languages, due to their higher complexity of encoding, were more
affected by this than languages that predominantly rely on the Latin alphabet.

The Unicode project aims to address this set of issues by providing a standard mapping
from code points, i.e., numbers, to characters. Since Unicode can be encoded using UTF-8,
UTF-16, and other encoding schemes, this does not entirely solve the Mojibake problem
and related issues (which caused a significant road block in this thesis, see Section 7.1.1), but
delivers a baseline for digital representation of textual data.

Among the ~7000 living languages and plenty more dead languages Unicode supports,
many of the symbols, character variations, and notational subtleties native to mathemat-
ical expressions are present. This enables “[support for] a wide variety of math usage on
computers, including in [...] languages like TeX, in math markup languages like MathML
and OpenMath, in internal representations of mathematics for applications like Mathem-
atica, Maple, and MathCAD, in computer programs, and in plain text.” [Beeton17]

Table 2.2 of “Unicode Technical Report #25: Unicode Support for Mathematics” (cited in
the previous paragraph and co-authored by Murray Sargent) provides a good overview of
where in Unicode's 17 planes the code points most relevant for math are located. A plane
is a continuous group of code points.

Most of the world's writing systems are encoded in Plane 0, the Basic Multilingual
Plane (abbreviatory BMP), as are most symbols relevant in mathematics. A subset of
Plane 0 is a designated “Private Use Area” whose code points may be used for applica-
tion-specific purposes – and indeed, UnicodeMathML makes use of them, as de-
scribed in Section 3.2.2.
Plane 1, the Supplementary Multilingual Plane (SMP), contains the rest of Unicode's
presently assigned code points – including the “Mathematical Alphanumeric Sym-
bols” block, which encodes variations of Latin and Greek letters and Arabic numerals
replicating common font styles, such as bold, italic, script, Fraktur, sans-serif, mono-
space, and combinations thereof .

1

2

3

4

5

6

https://en.wikipedia.org/wiki/Mojibake
https://lord.io/blog/2019/text-editing-hates-you-too/
https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols
https://stackoverflow.com/questions/47206070/why-are-there-holes-in-the-unicode-table
https://stackoverflow.com/a/17909597
https://en.wikipedia.org/wiki/Unicode_subscripts_and_superscripts
https://en.wikipedia.org/wiki/Mojibake
https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols

Noah Doersing ⁓ 13

⸻⸻
1 See http://opoudjis.net/unicode/unicode_astral.html.
2 See https://www.compart.com/en/unicode/category.
3 See https://threadreaderapp.com/thread/1194628388473819137.html.

Planes 1 through 16 are jokingly related to as astral planes since the most commonly used
characters are located in the BMP, so the higher planes see limited usage in most contexts.
This goes hand in hand with sometimes questionable software support for characters from
these planes.

The 17 Unicode planes are visualized in Figure 2.

S S
B S S T S P P
M M I I S U U
P P P P P A A

A B

⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ ¹¹ ¹² ¹³ ¹⁴ ¹⁵ ¹⁶

unassigned

"astral" planes

Figure 2: The 17 Unicode planes.

Each Unicode character belongs to one of the 29 Unicode character categories , for ex-
ample “Lowercase Letter” (abbreviatory “Lu”), “Modifier Letter” (Lm), “Spacing Mark”
(Mc), “Decimal Number” (Nd), or “Math Symbol” (Sm).

There likely is no piece of software that can display all Unicode characters correctly. When
a font contains no glyph for a specific code point, a replacement symbol such as � – jok-
ingly referred to as “tofu” because it's a while block – is displayed instead. You can ob-
serve this in the abstract of this thesis: U+20D7 COMBINING RIGHT ARROW ABOVE is not supported by the
specific font rendering stack used in this instance.

In my work on this thesis, I relied in a variety of tools to navigate the depths and shallows
of Unicode's planes, categories, blocks, and code points:

http://www.fileformat.info/info/unicode/index.htm provides pre-rendered example
images even for code points not supported by most fonts.
https://unicode-search.net allows its user to search Unicode characters by name –
this comes in handy, for example, when looking for different variants of integrals, re-
turning everything from U+222B INTEGRAL to U+2A0C QUADRUPLE INTEGRAL OPERATOR to U+2A17 INTEGRAL WITH
LEFTWARDS ARROW WITH HOOK.
https://www.compart.com shows all characters related to a given character.

1

2

3

http://opoudjis.net/unicode/unicode_astral.html
https://www.compart.com/en/unicode/category
https://threadreaderapp.com/thread/1194628388473819137.html
http://opoudjis.net/unicode/unicode_astral.html
https://www.compart.com/en/unicode/category
https://threadreaderapp.com/thread/1194628388473819137.html
http://www.fileformat.info/info/unicode/index.htm
https://unicode-search.net/
https://www.compart.com/

14 ⁓ Background

⸻⸻
1 See http://mathworld.wolfram.com/BinomialCoefficient.html.
2 See https://en.wikipedia.org/wiki/TeX#History. On page 482 of the digital typography book, Knuth's diary
entry from that fateful day is reproduced, and the subsequent pages provide insight into the initial design de-
cisions that went into TeX.

2.2 (LINEAR) MATH ENCODINGS
While simple mathematical formulas (or, in more general terms, expressions) such as Ein-
stein's iconic mass-energy equivalence formula

can more or less be written from left to right, more complicated expressions consist of
elements that are on top of other elements, or generally find themselves in a complicated
spatial alignment to each other. As an example, consider the product of binomial coeffi-
cients :

Since commonly used text-based formats are to be understood as linear sequences of
bytes, there is a need to express mathematical terms in a linear fashion.

As related in one of his many interesting blog posts, UnicodeMath's own Murray Sargent
developed SCROLL, “the first language capable of ‘typesetting’ mathematical equations on
a computer” [Sargent06] in the late 1960s. Around a decade later, “another physicist, Mike
Aronson, [...] suggested that the input format should resemble real linearized math as in
the C language rather than the Polish prefix format used in SCROLL. So [Sargent] wrote a
translator to accept a simplified linear format, the forerunner of the linear format [used]
in Office 2007” [Sargent06].

Around the same time, Donald Knuth, dissatisfied with the phototypesetting process
used for the second edition of the first volume of his work “The Art of Computer Program-
ming”, began developing TeX. On page 27 of the digital typography book, in a transcript of
a lecture given in 1978, he compares the linear math notations supported by

“commercially available systems [then] used to typeset mathematical journals”
[Knuth99], where the term was encoded as *gq"2 (where *g marks the next character
as being Greek and q, in this mode, means θ),
a system [Kerninghan75] “developed at Bell Laboratories [which] has been used to pre-
pare several books and articles” [Knuth99], where the same term was written theta sup
2, with
a primitive version of TeX, which at the time would have denoted the term as
\theta↑2.

Current versions of TeX and LaTeX instead understand \theta^2, of course, as does

1

2

http://mathworld.wolfram.com/BinomialCoefficient.html
https://en.wikipedia.org/wiki/TeX#History
http://mathworld.wolfram.com/BinomialCoefficient.html

Noah Doersing ⁓ 15

⸻⸻
1 See http://asciimath.org/.
2 As I, too, am wont to do: https://twitter.com/sundryautomata
3 This work led to the addition of five special, double-struck characters to Unicode – see
https://blogs.msdn.microsoft.com/murrays/2010/08/30/linear-format-notations-for-mathematics/ and Section
4.19.
4 See https://www.nfb.org/images/nfb/documents/pdf/nemeth_1972.pdf.
5 See https://www.nfb.org/images/nfb/publications/fr/fr28/fr280110.htm.

AsciiMath , a more recent linear format that uses ASCII characters to represent mathem-
atical notation in a deliberately human-readable way. For example, a fraction is repres-

ented as a/b in AsciiMath (and indeed in UnicodeMath), which is arguably more intuitive
than LaTeX's \frac{a}{b}.

Stephen Wolfram, when not busy playing with cellular automata, also dabbled in linear
formats: “Unlike with ordinary human natural language, it is actually possible to take a
very close approximation to familiar mathematical notation, and have a computer system-
atically understand it. That's one of the big things that we did [around 1995] in the third
version of Mathematica. And at least a little of what we learned from doing that actually
made its way into the specification of MathML.” [Wolfram00]

After this brief history of linear math formats (of which there are many more that I'm un-
aware of) and before moving on to UnicodeMath, I will briefly introduce a linear format
that sets itself apart from all others.

Quoting from Section 4.9 of the tech note (with links converted into footnotes), “[t]he 6-
dot Nemeth braille encoding was created by Abraham Nemeth for mathematical and sci-
entific notation. It’s general enough to encode almost all of UnicodeMath. He started
working on his encoding in 1946 and it was first published in 1952 by the American Print-
ing House for the Blind. As such it’s the first math linear format. It’s a little like Unicode-
Math in that [...] it’s a globalized notation, so localization isn’t needed except for embed-
ded natural language. Also both formats strive to make simple things easy and concise at
the cost of additional syntax rules. But because a mere 64 codes are used to encode virtu-
ally all of math notation [...], the semantics of the codes depend heavily on their contexts.
This level of complexity contrasts with UnicodeMath which has the luxury of the exhaust-
ive Unicode math symbol set. Accordingly, encoding math expressions can become quite
tricky as revealed in the full specification . [...] Nemeth recounts some history in this 1991
interview .” [Sargent16]

1

2 3

4

5

http://asciimath.org/
https://twitter.com/sundryautomata
https://blogs.msdn.microsoft.com/murrays/2010/08/30/linear-format-notations-for-mathematics/
https://www.nfb.org/images/nfb/documents/pdf/nemeth_1972.pdf
https://www.nfb.org/images/nfb/publications/fr/fr28/fr280110.htm
http://asciimath.org/
https://www.nfb.org/images/nfb/documents/pdf/nemeth_1972.pdf
https://www.nfb.org/images/nfb/publications/fr/fr28/fr280110.htm

16 ⁓ Background

2.3 UNICODEMATH

“ Bertrand Russell once wrote, “A good notation has a subtlety and suggestive-
ness which at times make it seem almost like a live teacher [...] and a perfect
notation would be a substitute for thought.” [UnicodeMath] certainly isn't a sub-
stitute for thought, but it is a more mathematically natural notation than previ-
ously available on computers. ”

— Murray Sargent [Sargent10]

A successor to Sargent's previous work on linear math notation, the linear format used
within Microsoft's products today is called UnicodeMath. It “uses the Unicode math sym-
bol set [...], resembles real mathematical notation the most closely of all math linear
formats, and handles almost every mathematical notation. Since Unicode characters are
global by nature, UnicodeMath doesn’t need localization” [Sargent16a] in contrast to
formats like LaTeX and AsciiMath, which are based on control words.

For example, the integral

can be written as

∫₀²⁰ √x ⅆx

in UnicodeMath whilst a number of control words (along with some manual spacing ad-
justment) are required in LaTeX:

\int_0^{20} \sqrt{x} \ dx

A different expression, written as sin θ=(e^iθ-e�-iθ)/2i and rendered as shown below,
exemplifies how “[o]perators and operator precedence are used to delimit arguments. A
binary minus has lower precedence than the superscript operator ^ and the fraction oper-
ator /, but a unary minus has higher precedence than ^. This approach contrasts with
LaTeX and AsciiMath which require that arguments consisting of more than one element
be enclosed in {} or (), respectively.” [Sargent16c]

“A really neat feature of this notation is that the linear text is, in fact, a legitimate math-
ematical notation in its own right, so it's relatively easy to read.” [Sargent16b] “In addition
to being the most readable linear format, UnicodeMath is the most concise. It represents
the simple fraction, one half, by the 3 characters 1/2" [Sargent16a] – in contrast, LaTeX re-
quires 11 characters, and “typical MathML takes 62 characters” [Sargent16a]. “Another ad-
vantage of

Noah Doersing ⁓ 17

⸻⸻
1 Note that the changes between version 1 and 3.1 are fairly insignificant, as far as changes from versions 1 to
versions 3 go. See Section “Version differences” of the tech note for details.
2 Sargent himself demonstrates this in a video, see https://www.youtube.com/watch?v=yyvJwNeUALY – also, equa-
tion build-up and its inverse is patented: https://patents.google.com/patent/US20060059217

UnicodeMath over MathML and [a Microsoft Office-specific variant thereof] is that Uni-
codeMath can be stored anywhere Unicode text is stored. When adding math capabilities
to a program, XML formats require redefining the program's file format and potentially
destabilizing backward compatibility, while UnicodeMath does not.”

“ And it's delightful that the operator characters look like the operators they
represent, while control words do not. ”

— Murray Sargent, in Section 3.2 of the tech note [Sargent16]

Refer to table 1 for a set of basic examples where UnicodeMath is both highly concise and
more human-readable than LaTeX. UnicodeMath's syntax will be explained in more detail
in lockstep with a scenic tour through my UnicodeMath parser in Chapter 4.

Expression UnicodeMath LaTeX

1/2 \frac{1}{2}

√2 \sqrt 2

δ₁⋅ρ₁ \delta_1 \cdot \rho_1

a≠b a \neq b

(a+b) ̂ \widehat{a+b}

Table 1: Different mathematical expressions formulated in UnicodeMath and LaTeX.

At the time of writing, UnicodeMath version 3.1 is the latest release. A formal specifica-
tion is not available – instead, Murray Sargent has published a Unicode Technical Note on
UnicodeMath, in which he explains the notation in a more colloquial manner, largely
based on examples. A simplified grammar is given, however it has not proven to be en-
tirely accurate, as I will discuss in Section 4.1. In the tech note, Sargent also outlines an al-
gorithm for recognizing undelimited mathematical expressions within text and muses
about how UnicodeMath could be used to make math-heavy code more readable.

Sargent describes UnicodeMath's syntax in lockstep with how it used in Microsoft's
products for equation input, which made it difficult to determine what's actually supposed
to be part of the syntax and what's the post-parsing, pre-rendering transformations ap-
plied to expressions during “build-up”, i.e., the successive conversion of UnicodeMath into
a rendered representation as the user is typing. I've incorporated small bits and pieces
that I think are actually related to these input methods into the grammar wherever I was
confident that this wouldn't break any otherwise legal syntax.

1

2

https://www.youtube.com/watch?v=yyvJwNeUALY
https://patents.google.com/patent/US20060059217

18 ⁓ Background

⸻⸻
1 See https://www.unicodeconference.org/presentations/S9T1-Sargent.pdf.
2 See https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/hh780445%28v%3Dvs.85%29.
3 See https://developer.mozilla.org/en-US/docs/Web/CSS.
4 See https://en.wikipedia.org/wiki/ECMAScript.

Two other points worth mentioning before moving on:

UnicodeMath is designed with an eye on accessibility, which is outlined in a slide
deck on the subject.
Windows provides an API for rendering of UnicodeMath expressions.

2.4 HTML, CSS, JAVASCRIPT, AND BROWSERS
Before continuing with the more interesting stuff, I'll briefly define some jargon and men-
tion several points relating to the standard web stack that both Markdeep and my work are
based on.

When opened in a web browser, an HTML document is transformed into an internal
representation that may be queried and modified via JavaScript via a standard inter-
face. This interface is called DOM, short for Document Object Model. It facilitates tra-
versal of the tree-shaped document structure – nodes represent HTML tags/elements
and their attributes, parent-child relationships describe the contents of tags. Integ-
rating UnicodeMath into Markdeep makes use of the DOM in this way.
DOM manipulations extend to style modifications. The appearance of HTML ele-
ments is otherwise defined using CSS .
JavaScript is (in the context of this thesis) solely executed client-side, i.e., within the
user's browser. It's worth noting that JavaScript “is executed in a single thread, that
is, two [functions] cannot run at same time[, and this] thread also maintains a queue,
which has asynchronous tasks queued to be executed one by one [so that a] long run-
ning queue task can [block] the execution of all other queue tasks and the main
script” [Prusty15]. This means that during a long, uninterrupted computation, no pro-
cessing of new input or creation of new output can take place. This behavior is one of
the reasons why a naïve integration of UnicodeMath into Markdeep (outlined in Section
5.1) didn't cut it.
JavaScript has not remained static throughout time – its specification, called
ECMAScript , experiences an update every year. UnicodeMathML, including the play-
ground and the Markdeep integration, makes use of features introduced as recently as
in ECMAScript 2017, however the core is written in a more conservative subset of
features.
JavaScript strings are encoded in UTF-16, an encoding based on 16-bit code units. Al-
though UTF-16 is capable of encoding all Unicode code points, only the BMP's code
points fit into a single code unit. A surrogate pair – the concatenation of two spe-
cially reserved code units – is used to encode astral plane characters: 𝒩 (U+1D4A9 MATHEM-
ATICAL SCRIPT CAPITAL N), which is encoded in the SMP, is represented as the surrogate pair
U+D835 U+DCA9 in JavaScript strings. This property of the UTF-16 used here complicates
many

1

2

3

4

https://www.unicodeconference.org/presentations/S9T1-Sargent.pdf
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/hh780445%28v%3Dvs.85%29
https://developer.mozilla.org/en-US/docs/Web/CSS
https://en.wikipedia.org/wiki/ECMAScript
https://www.unicodeconference.org/presentations/S9T1-Sargent.pdf
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/hh780445%28v%3Dvs.85%29
https://developer.mozilla.org/en-US/docs/Web/CSS
https://en.wikipedia.org/wiki/ECMAScript

Noah Doersing ⁓ 19

operations on strings containing such characters, which – combined with the fact
that the vast majority of commonly used symbols is encoded in the BMP – is why cor-
rect surrogate pair handling is not implemented in many JavaScript libraries.
Because JavaScript is the primary client-slide programming language on the web,
powerful debugging and profiling tools have been built around it. As an example, I
will highlight the profiler built into Google Chrome. It can be accessed by opening the
developer tools (View > Developer > Developer Tools) and switching the the “Per-
formance” tab. There, a profile can be recorded, either immediately or in conjunction
with a page reload. As presented in Figure 3, once a profile has been recorded, a flame
graph of function calls and other events is shown. A click on one of these events –
here, a call of the draw function – reveals which of its component actions have taken
up the bulk of its processing time. This tool was tremendously useful in optimizing
UnicodeMathML (see Section 7.1.5).

Figure 3: A typical session in Google Chrome's JavaScript profiler. Here, the performance of the
UnicodeMath playground's draw function, which takes a number of UnicodeMath expressions,
translates them to MathML, and presents the results to the user, is scrutinized.

file:///Users/noah/Dropbox/uni/Masterarbeit/unicodemathml/thesis/chromeprofiler.png

20 ⁓ Background

⸻⸻
1 See https://www.w3.org/1999/07/REC-MathML-19990707/toc.html – it happened to the be the first W3C standard
built upon XML's formal underpinnings.
2 See https://developer.mozilla.org/en-US/docs/Web/MathML#Browser_compatibility.
3 See https://www.iso.org/standard/58439.html.
4 See https://www.w3.org/TR/MathML3/chapter3.html#presm.scriptlevel.

2.5 MATHML
MathML, an XML-based markup language for mathematical expressions, was first released
as a W3C recommendation in 1998. Initially supported by major browsers around 2011 ,
MathML 3.0 became an ISO standard in 2016.

Two flavors of MathML exist:

Content MathML is designed to provide semantics-preserving encoding. “The intent
of the content markup in the Mathematical Markup Language is to provide an explicit
encoding of the underlying mathematical structure of an expression, rather than any
particular rendering for the expression.” [Carlisle03]
Presentation MathML is instead focused on visual expressiveness, much like other
popular math notations. This difference has led to higher adoption of this branch of
the standard. “Although Presentation MathML doesn’t have all of the semantics of
Content MathML, it does have more semantics than [La]TeX” [Sargent07], which is re-
flected in UnicodeMath's design.

UnicodeMathML translates UnicodeMath expressions into Presentation MathML for ren-
dering – Content MathML is thus not relevant within the scope of this thesis. All further
references to MathML relate to Presentation MathML only.

For example, Einstein's mass-energy equivalence formula can be expressed with the fol-
lowing (annotated) MathML markup.

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 <mrow>
 <mi>E</mi> <��� identifier ��>
 <mo>=</mo> <��� operator ��>
 <mrow> <��� grouping, similar to in HTML ��>
 <mi>m</mi>
 <msup> <��� subscript ��>
 <mi>c</mi>
 <mn>2</mn> <��� number ��>
 </msup>
 </mrow>
 </mrow>
</math>

The <math> tag's display="block" attribute switches MathML renderers into a mode equi-
valent to LaTeX's displaystyle, i.e., with looser constraints on vertical space: for example,
fractions may be displayed in a larger font, n-ary operators such as integral or sum signs
may grow, or the subscript of may move below (that last example is actually

1 2

3

4

https://www.w3.org/1999/07/REC-MathML-19990707/toc.html
https://developer.mozilla.org/en-US/docs/Web/MathML#Browser_compatibility
https://www.iso.org/standard/58439.html
https://www.w3.org/TR/MathML3/chapter3.html#presm.scriptlevel
https://developer.mozilla.org/en-US/docs/Web/MathML#Browser_compatibility
https://www.iso.org/standard/58439.html
https://www.w3.org/TR/MathML3/chapter3.html#presm.scriptlevel

Noah Doersing ⁓ 21

⸻⸻
1 See https://github.com/KaTeX/KaTeX/issues/593#issuecomment-271067131.
2 See https://caniuse.com/#search=mathml.

implemented in my translator since some MathML renderers don't support an attribute
required for this). displaystyle mode is indended for stand-alone expressions. Conversely,
display="inline" corresponds to \textstyle and should be used for expressions occurring
within a paragraph of text.

To give you a feel for how MathML tastes, as it were: Other MathML tags include

<mfrac> for fractions,
<msubsup> for combinations of subscripts and superscripts,
<mmultiscripts> for subscripts and/or superscripts shown to the left of their base,
<mfenced> for expressions within delimiters that grow to match their content,
<msqrt> for square roots,
<mroot> for n-th roots, and
<mspace> for various spaces, including line breaks.

Three additional points I'd like to make before moving on:

The MathML renderers I've tested appear to use a box model akin to TeX's. Page 640
of the digital typography book says: “Each letter is inside a box, and we glue boxes to-
gether to make a line, and each line is viewed as a box, and the boxes are fitted to-
gether to form a paragraph” [Knuth99] or an equation. The results in artifacts where,
for example, in , the square root symbol surrounding is shorter than the
one around due to the properties of these letters.
MathML, due to its structure-encoding properties, is well-suited for making mathem-
atics available to vision-impared people who use screen readers. In a GitHub com-
ment thread on whether the web-based LaTeX renderer KaTeX should drop MathML
as an output format, a comment notes that “screen readers do [the following] with
presentation MathML: They produce speech; They produce Nemeth code and poten-
tially other braille math codes (there are several used around the world) on an at-
tached refreshable braille display; They allow navigation/exploration of the
expression.”
Murray Sargent notes that “MathML has been designed for machine representation of
mathematics and is useful for interchange between mathematical applications as well
as for rendering the math in technical documents. While very good for these pur-
poses, MathML is awkward for direct human input. Hence it’s desirable to have more
user friendly ways of inputting mathematical expressions and equations” [Sargent07],
which this thesis hopefully provides.

2.5.1 BROWSER SUPPORT

As is the case for any client-side web technology, browser adoption is critical to MathML
being usable in practice. At the time of writing, browsers with MathML support account
for around 22% of the global installed base. Currently, only

1

2

https://github.com/KaTeX/KaTeX/issues/593#issuecomment-271067131
https://caniuse.com/#search=mathml
https://github.com/KaTeX/KaTeX/issues/593#issuecomment-271067131
https://caniuse.com/#search=mathml

22 ⁓ Background

⸻⸻
1 See https://mathml.igalia.com/.
2 Igalia was previously instrumental in improving MathML rendering in Webkit, the HTML rendering engine Sa-
fari is built around: https://webkit.org/blog/6803/improvements-in-mathml-rendering/
3 Or rather, what they call MathML Core – “a necessary and rigorous definition of the fundamental subset of
MathML features which are widely developed, deployed and used in practice.” See Section 8.1 for details.
4 See https://developer.microsoft.com/en-us/microsoft-edge/platform/status/mathml/.
5 See https://en.wikipedia.org/wiki/Polyfill.
6 See https://www.mathjax.org/.
7 See http://www.math.union.edu/~dpvc/jsMath/.
8 See https://katex.org/.
9 See https://github.com/KaTeX/KaTeX/blob/master/src/Parser.js.

Firefox (including Firefox for Android) and
Safari (including on iOS)

support a significant subset of MathML natively, with

an ongoing push by Igalia to implement MathML rendering in Chromium (and thus
Google Chrome) and
Microsoft listing MathML support as being “in development” for their Chromium-
based variant of Edge, “not currently planned” for EdgeHTML-based Edge releases
and “not supported” in Internet Expolorer.

How well Igalia's initative pans out remains to be seen in the coming months. In spite of
the presently poor state of MathML support in major browsers, it is usable in practice
thanks to a polyfill provided by MathJax.

2.5.2 MATHJAX

MathJax is a self-described “JavaScript display engine for mathematics that works in all
browsers” . It currently accepts three different input formats – LaTeX, AsciiMath and
MathML. MathJax can convert either of them into one of the three supported output
formats – HTML+CSS, SVG or MathML.

The UnicodeMathML playground, when opened in any browser other than Firefox or Sa-
fari, uses MathJax for rendering of translation results. MathJax is also built into Markdeep.
markdeep-thesis, which this thesis is typeset with (see Section 6.2.1), uses MathJax to trans-
form UnicodeMathML's MathML output into SVG graphics.

MathJax was very useful to me in figuring out how best to express certain mathematical
constructs in MathML (or get a “second opinion”, at least): I simply needed to formulate
them in LaTeX and then configure MathJax to convert this notation to MathML.

I am not aware of any alternatives for rendering MathML on the web in a browser-agnostic
fashion. For LaTeX math, however, there are several tools, including jsMath and KaTeX ,
which is referred to as the “fastest math typesetting library for the web” on its website and
employs a hand-coded parser.

1 2 3

4

5

6

7 8

9

https://mathml.igalia.com/
https://webkit.org/blog/6803/improvements-in-mathml-rendering/
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/mathml/
https://en.wikipedia.org/wiki/Polyfill
https://www.mathjax.org/
http://www.math.union.edu/~dpvc/jsMath/
https://katex.org/
https://github.com/KaTeX/KaTeX/blob/master/src/Parser.js
https://mathml.igalia.com/
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/mathml/
https://en.wikipedia.org/wiki/Polyfill
https://www.mathjax.org/
http://www.math.union.edu/~dpvc/jsMath/
https://katex.org/
https://github.com/KaTeX/KaTeX/blob/master/src/Parser.js

Noah Doersing ⁓ 23

⸻⸻
1 The absence of any renderer support for equation arrays means that UnicodeMath's notation for horizontal
alignment of multiple equations (detailed in Section 3.23 of the tech note), as well as equation arrays (Section
3.19), is effectively useless within the context of UnicodeMathML. I have implemented equation arrays anyway,
so they might start rendering properly at some point in the future. See Section 7.1.4, as well.
2 See https://developer.mozilla.org/en-US/docs/Mozilla/MathML_Project/MathML_Torture_Test.

Before concluding this section on MathML, it is worth noting that no MathML renderer
I'm aware of supports MathML “without asterisks”.

Figure 4: A number of MathML expressions (translated from UnicodeMath) rendered with (from
left to right) Safari 13.0.2, Firefox 69.0, and MathJax 2.7.5 with SVG output in Google Chrome
77.0.3865.90. Note that these are worst-case examples, specifically chosen to display the dif-
ferences between renderers.

As shown in Figure 4, different renderers have different quirks. Some MathML elements
such as <merror> (for error reporting) and <malignmark> (for horizontally aligning multiline
formulas within equation arrays) appear to be wholly unsupported.

Mozilla has published a “MathML Torture Test” which compares XeTeX-rendered formu-
las from Donald Knuth's TeXbook with equivalent MathML representations as rendered by
the user's browser.

1

2

https://developer.mozilla.org/en-US/docs/Mozilla/MathML_Project/MathML_Torture_Test
file:///Users/noah/Dropbox/uni/Masterarbeit/unicodemathml/thesis/safarifirefoxmathjax.png
https://developer.mozilla.org/en-US/docs/Mozilla/MathML_Project/MathML_Torture_Test

24 ⁓ Background

⸻⸻
1 See https://daringfireball.net/projects/markdown/.
2 See https://casual-effects.com/markdeep/.
3 Just .html would work, too – however, since the file contains Markdown instead of HTML, .md.html is semantic-
ally superior.

Igalia has published an article showcasing the differences across various MathML render-
ers, concluding that there are currently “three different [native] MathML implementations
[in browsers] but work is in process to improve interoperatility [sic] between them and fix
bugs” [Igalia19].

In my experience, most of the time, MathJax's SVG output format looks better than the
what the renderers built into Firefox and Safari produce. MathJax, however, comes with a
significant page-load performance penalty, so the UnicodeMathML playground, for ex-
ample, by default only utilizes MathJax in other browsers.

2.6 MARKDEEP
Basend on John Gruber's Markdown , a text markup format “intended to be as easy-to-
read and easy-to-write as is feasible” [Gruber04] that “should be publishable as-is, as plain
text, without looking like it’s been marked up with tags or formatting instructions” [Gruber-
04], Morgan McGuire's JavaScript-based Markdown renderer Markdeep extends this philo-
sophy to diagrams and other elements.

“ Markdeep is a technology for writing plain text documents that will look
good in any web browser, whether local or remote. It supports diagrams, calen-
dars, equations, and other features as extensions of Markdown syntax. ”

— Morgan McGuire [McGuire19]

I assume that you are basically familar with Markdown's syntax. If this is not the case: Git-
Hub has published a guide at https://guides.github.com/features/mastering-markdown/.

Markdown supports rendering of LaTeX, AsciiMath, and MathML equations via MathJax.
This thesis aims to expand the range of supported math formats to include UnicodeMath.
This integration of UnicodeMathML into Markdeep is discussed in Chapter 5.

In contrast to most other Markdown renderers – which require a server component in or-
der to serve rendered Markdown content on the web – Markdeep is implemented fully cli-
ent-side: Any Markdown file, when opened in a browser, can be rendered automatically if

1. the .md file extension is changed to .md.html , which convinces browsers to treat the
file as an HTML document instead of displaying its contents verbatim, and

2. the following line is included at the bottom of the file:

<script src="https://casual-effects.com/markdeep/latest/markdeep.min.js"></script>

1

2

3

https://daringfireball.net/projects/markdown/
https://casual-effects.com/markdeep/
https://daringfireball.net/projects/markdown/
https://casual-effects.com/markdeep/
https://guides.github.com/features/mastering-markdown/

Noah Doersing ⁓ 25

⸻⸻
1 See https://pegjs.org/.
2 SAP engineers, during development of the parser building toolkit Chevrotain, have built a page that compares
the performance of various JavaScript-emitting parsing libraries – PEG.js performs well on this benchmark:
https://sap.github.io/chevrotain/performance/
3 As a point of reference: the finished UnicodeMath parser weighs in at around 300 KB, and this is with PEG.js
configured to optimize for parsing speed instead of code size.
4 See https://github.com/pegjs/pegjs/issues/586.

This lends itself to modifications of, and tools built upon, Markdeep – indeed, I have mod-
ified Markdeep to add UnicodeMath support as described in Chapter 5, and I've built several
Markdeep-based tools that I'll briefly outline in Section 6.2.

2.7 PARSER GENERATORS
Early on in the design of UnicodeMathML, the decision was made to use a parser generator
instead of implementing a parser by hand.

My expectation was that this would accelerate development (which, in hindsight, is highly
debatable – see Section 7.1.1).

Another benefit hinged on the fact that even though Sargent includes a basic Unicode-
Math grammar in Appendix A of the tech note, “[t]his grammar is simplified compared to
the model in the text” [Sargent16] and does not give an indication of the refinements re-
quired to accurately model the abundance of edge cases and syntactical sugar present in
UnicodeMath. My thought was that this way, it would be easier to modifiy the parser as
the full grammar emerged (in this respect, the plan was solid – there were many changes
throughout the process, including significant departures from the basic grammar given in
the tech note).

There are many parser generators that emit JavaScript code. Within the scope of this pro-
ject, I worked with two of them: PEG.js and ANTLR.

2.7.1 PEG.JS

I initially settled on PEG.js due to

the high performance of the parsers it generates,
how readable its grammar format is,
its support for semantic actions that can be used to build up a custom AST during
parsing,
the choice of generating parsers either in the form of a JavaScript object or relatively
compact JavaScript source code which does not require a separate runtime,
its fairly responsive maintainer and community and because it is still being actively
developed, and
because it is written in plain JavaScript, requiring virtually no setup.

As its name suggests, PEG.js generates JavaScript code implementing a recursive descent

1

2

3

4

https://pegjs.org/
https://sap.github.io/chevrotain/performance/
https://github.com/pegjs/pegjs/issues/586
https://pegjs.org/
https://github.com/pegjs/pegjs/issues/586

26 ⁓ Background

⸻⸻
1 Based on a grammar given in the PEG.js documentation: https://pegjs.org/documentation#grammar-syntax-
and-semantics

parser based on a parsing expression grammar (abbreviatory PEG). PEGs differ from the
more well-known context-free grammars (CFGs) in one important respect, as Bryan Ford's
2004 paper which introduced PEGs notes: Although “[t]he ability of a CFG to express am-
biguous syntax is an important and powerful tool for natural languages [...], this power
gets in the way when we use CFGs for machine-oriented languages that are intended to be
precise and unambiguous. [...] PEGs are stylistically similar to CFGs with [regular expres-
sion]-like features added [...]. A key difference is that in place of the unordered choice op-
erator ‘|’ used to indicate alternative expansions for a nonterminal [...], PEGs use a priorit-
ized choice operator ‘/’. This operator lists alternative patterns to be tested in order, un-
conditionally using the first successful match. The EBNF rules ‘A → a b | a’ and ‘A → a | a b’
are equivalent in a CFG, but the PEG rules ‘A ← a b / a’ and ‘A ← a / a b’ are different. The
second alternative in the latter PEG rule will never succeed because the first choice is al-
ways taken if the input string to be recognized begins with ‘a’. A PEG may be viewed as a
formal description of a top-down parser.” [Ford04] This grammar semantics lends itself to
the generation of fast, linear-time parsers.

Importantly, PEG.js supports (and encourages use of) semantic actions, code snippets at-
tached to grammar rules that respectively are executed each time the parser recognizes a
match for that rule. While the UnicodeMath grammar I wrote uses semantic actions to
build up an AST corresponding to the input expressions, semantic actions can be used to
directly compute an output.

2.7.1.1 EXAMPLE

For example, Listing 1 contains a PEG.js grammar that recognizes simple arithmetic ex-
pressions and directly evaluates them via semantic actions.

1 {
2 function makeInteger(o) {
3 return parseInt(o.join(""), 10);
4 }
5 }
6
7 start = expression
8
9 expression
10 = head:element tail:(("+" / "-") element)* {
11 return tail.reduce(function(result, element) {
12 if (element[0] ��� "+") { return result + element[1]; }
13 if (element[0] ��� "-") { return result - element[1]; }
14 }, head);
15 }
16
17 element
18 = left:factor "*" right:element { return left * right; }
19 / factor
20
21 factor

1

https://pegjs.org/documentation#grammar-syntax-and-semantics

Noah Doersing ⁓ 27

⸻⸻
1 Note that “PEG does not backtrack through [these] repetition operators” when matches within them fail, as
noted on https://groups.google.com/forum/#!topic/pegjs/maCYLZG_gCk. “The expression ‘a* a’ for example can
never match any string.” [Ford04]
2 See https://groups.google.com/forum/#!topic/pegjs/i1jsGNbyggk.
3 See https://en.wikipedia.org/wiki/Parsing_expression_grammar#Indirect_left_recursion.

22 = integer
23 / "(" expr:expression ")" { return expr; }
24
25 integer = num:[0-9]+ { return makeInteger(num); }

Listing 1: A simple PEG.js grammar that parses and evaluates arithmetic expressions such as
40+2, 2*3+2*2 or 2*(3+2)*2. You're encouraged to take it for a spin on
https://pegjs.org/online.

Lines 1–5 of Listing 1 are not strictly part of the grammar – instead, PEG.js makes any func-
tions defined in this area callable from semantic actions.

By default, PEG.js begins parsing from the first rule it encounters, which in this case is
located in line 7 and appropriately named start. No semantic action is attached to this
entry rule, so whatever its right-hand side returns is simply returned as the parser's
output.

The expression rule defined in lines 9–15 exemplifies how grammar rules can be defined
in a regex-like fashion: it matches element, element ("+" / "-") element, element ("+" /
"-") element ("+" / "-") element, and so on. Top-level components of the parsing ex-
pression, i.e., the right-hand side, can be named; these names can be referred to in se-
mantic actions. Parentheses may be used to create what amounts to an anonymous gram-
mar rule within a parsing expression, as was done for (("+" / "-") element) here.

The element rule of lines 17-19 shows that multiple alternative parsing expressions, separ-
ated by /, may be assigned to a rule. PEG semantics dictate that the generated parser will
successively try out these alternatives in order, progressing with the first one that
matches. Thus, the order of alternatives is crucial – if one were to switch them here, the
grammar would cease to recognize multiplicative subexpressions. In other words, “PEG
parsers are greedy algorithms. They accept the first sequence [of grammar rules] that
matches the input and backtraces [sic] if the sequence doesn't reach an accepting state be-
fore it hits a mismatch.” This PEG.js behavior is reflected in my UnicodeMath grammar.

Another point worth making is that rewriting this rule to

element
 = left:element "*" right:element { return left * right; }
 / factor

would lead to an error during parser generation as this rule is now left-recursive – PEG.js
detects left recursion, but does include functionality to eliminate it.

The integer rule defined in line 25 displays regex-like character range matching, which is

1

2

3

https://groups.google.com/forum/#!topic/pegjs/maCYLZG_gCk
https://groups.google.com/forum/#!topic/pegjs/i1jsGNbyggk
https://en.wikipedia.org/wiki/Parsing_expression_grammar#Indirect_left_recursion
https://pegjs.org/online
https://groups.google.com/forum/#!topic/pegjs/i1jsGNbyggk
https://en.wikipedia.org/wiki/Parsing_expression_grammar#Indirect_left_recursion

28 ⁓ Background

⸻⸻
1 In addition to the * and + quantifiers, PEG.js implements a zero-or-one quantifier ?. What's more, PEG.js fea-
tures a lookahead mechanism which came in handy in some places: ! expression performs negative lookahead
(it matches if expression does not match and does not consume any input), and & expression analogously imple-
ments positive lookahead.
2 See https://pegjs.org/documentation.
3 See https://pegjs.org/documentation.

significantly more efficient than 0 / 1 / … / 9 would be. Also, the previously-defined
function makeInteger is called in this rule's semantic action.

Operator precedence is encoded within the structure of the grammar – PEG.js does not
provide syntax for defining it any other way. This was a minor issue with regard to replic-
ating UnicodeMath's semantics in UnicodeMathML's parser, but I managed to solve it
without too much trouble. Note that Listing 1 demonstrates most of the PEG.js features
used in the UnicodeMath grammar, which is located at ☁/code/src/unicodemathml.pegjs.

2.7.1.2 CONFIGURATION

PEG.js allows the programmer to set a number of options once it's time to build a parser
from a grammar:

The output format – by default, PEG.js returns a parser in the form of a JavaScript ob-
ject, but generating a static copy of the parser that take the form of JavaScript source
code is supported, as well.
Whether the parser should cache already-successfully-parsed subexpressions as it
tries out different alternatives instead of starting anew every time, “avoiding expo-
nential parsing time in pathological cases but making the parser slower”, according
to the PEG.js documentation. However, for my UnicodeMath grammar (even after ap-
plying a number of manual optimizations), this makes things about 20x faster on av-
erage than sans caching (this is further discussed in Section 7.1.5).
Whether to include the bits and pieces required to trace the parser's progress – if en-
abled, the parser keeps a log as it enters and exits grammar rules, which can be help-
ful when debugging the grammar. This is somewhat akin to compiling C++ code with
debug symbols.
More options (that are less relevant in a UnicodeMathML context) are explained in
PEG.js's documentation.

1

2

3

https://pegjs.org/documentation
https://pegjs.org/documentation
https://pegjs.org/documentation
https://pegjs.org/documentation

Noah Doersing ⁓ 29

⸻⸻
1 See https://www.antlr.org/.
2 See https://en.wikipedia.org/wiki/ANTLR#Projects.
3 The initial commit to https://github.com/pegjs/pegjs was performed on March 7, 2010, but ANTLR was re-
leased in February 1992.
4 See https://github.com/antlr/antlr4/blob/master/doc/targets.md.
5 In SAP's previously mentioned benchmark of JavaScript-emitting parsing libraries, the ANTLR-generated pars-
er's performance is not far behind its PEG.js equivalent.
6 See https://www.npmjs.com/package/antlr4.
7 See https://webpack.js.org/.
8 See https://github.com/antlr/antlr4/blob/master/doc/javascript-target.md.

2.7.2 ANTLR

After I ran into Unicode-related trouble with PEG.js (see Section 7.1.1), I experimented with
ANTLR (“ANother Tool for Language Recognition”), a widely-used parser generator that

is written in Java,
has been around for a long time ,
can generate parsers in various languages (these targets include Java, Python, Java-
Script, C++, and Swift, among others), and
is generally known to generate fast parsers.

Parsers generated by ANTLR 4, the most recent generation, make use of the ALL(∗) (pro-
nounced “allstar”, short for Adaptive LL(∗)) parsing algorithm. ALL(∗) parsers “combine
the simplicity of deterministic top-down parsers with the power of a GLR-like mechanism
to make parsing decisions. Specifically, LL parsing suspends at each prediction decision
point (nonterminal) and then resumes once the prediction mechanism has chosen the ap-
propriate production to expand. The critical innovation is to move grammar analysis to
parse-time; no static grammar analysis is needed [and] ALL(∗) is in theory but
consistently performs linearly on grammars used in practice” [Parr14], according to the pa-
per introducing the ALL(∗) algorithm.

Parsers generated by ANTLR 4's JavaScript target require a runtime in order to be execut-
able in a browser, which makes them larger than PEG.js-generated parsers. Further,
Webpack must be used to integrate runtime and parser.

Combined with performance issues I experienced after implementing a subset of the Uni-
codeMath grammar in ANTLR (located in ☁ /antlr-experiment/, refer to ☁ /antlr-
experiment/README.md for help with setting things up), this convinced me to switch back to
PEG.js. This decision and what led to it is explored in more detail in Section 7.1.1.

1 2

3

4

5

6

7 8

https://www.antlr.org/
https://en.wikipedia.org/wiki/ANTLR#Projects
https://github.com/pegjs/pegjs
https://github.com/antlr/antlr4/blob/master/doc/targets.md
https://www.npmjs.com/package/antlr4
https://webpack.js.org/
https://github.com/antlr/antlr4/blob/master/doc/javascript-target.md
https://www.antlr.org/
https://en.wikipedia.org/wiki/ANTLR#Projects
https://github.com/antlr/antlr4/blob/master/doc/targets.md
https://www.npmjs.com/package/antlr4
https://webpack.js.org/
https://github.com/antlr/antlr4/blob/master/doc/javascript-target.md

30 ⁓ Background

⸻⸻
1 See https://github.com/asciimath/asciimathml/blob/master/ASCIIMathML.js.
2 See https://github.com/mvoidex/UnicodeMath.
3 See https://ctan.org/pkg/unicode-math.
4 See http://www.mathtoweb.com/cgi-bin/mathtoweb_home.pl.

2.8 PRIOR AND RELATED WORK
Much related work has already been discussed in the previous sections:

AsciiMath's syntax is similar to UnicodeMath's. Its canonical implementation, de-
veloped in conjunction with the language itself, uses a hand-coded parser to trans-
late AsciiMath into MathML.
A variant of UnicodeMath ships as part of Microsoft's office suite, where it is referred
to as “linear format”. This implementation differs from what's specified in the tech
note in minor respects, but was useful in clearing up a number of ambiguities.

Several folks have implemented parsers for subsets of UnicodeMath, but none of the ones
I could find seem to be more than half-baked:

https://github.com/appcypher/unicode-math (stalled at an early stage)
https://github.com/jipsen/UnicodeMath (narrow subset, handwritten parser)

Other things that may be of interest:

The Sublime Text plugin “UnicodeMath” , which allows input of UnicodeMath expres-
sions. Combined with UnicodeMathML's Markdeep integration, this makes Unicode-
Math-enabled document authoring a breeze.
The XeTeX and LuaTeX package “unicode-math” allows the use of Unicode symbols
in LaTeX documents – simple UnicodeMath expressions can be used in LaTeX this
way.
The Java application “MathToWeb” translates LaTeX math into MathML.

1

2

3

4

https://github.com/asciimath/asciimathml/blob/master/ASCIIMathML.js
https://github.com/mvoidex/UnicodeMath
https://ctan.org/pkg/unicode-math
http://www.mathtoweb.com/cgi-bin/mathtoweb_home.pl
https://github.com/asciimath/asciimathml/blob/master/ASCIIMathML.js
https://github.com/appcypher/unicode-math
https://github.com/jipsen/UnicodeMath
https://github.com/mvoidex/UnicodeMath
https://ctan.org/pkg/unicode-math
http://www.mathtoweb.com/cgi-bin/mathtoweb_home.pl

Noah Doersing ⁓ 31

3
IMPLEMENTATION
ARCHITECTURE
This chapter is designed to remove complexity from the next. Put differently: I will now
discuss some details of the UnicodeMathML pipeline – the set of transformations applied
to a mathematical expression on its path through UnicodeMathML – with the goal of later
focusing on UnicodeMath parsing and its translation to MathML only, blissfully ignoring
any non-core aspects. Recall Figure 1 from the introduction for a high-level visual overview
of the pipeline.

3.1 UNICODEMATHML.PEGJS
The UnicodeMath grammar (explained in Section 4.1) is kept in
☁/code/src/unicodemathml.js. I've previously discussed PEG.js's grammar syntax, how-
ever I'd like to present another example to exemplify how the UnicodeMath AST is built
up during parsing – it's a standard JavaScript object:

// terms enclosed in rectangles, circles, etc.
enclosed
 = "▭(" m:bitmask "&" o:exp ")" {
 return {enclosed: {mask: m, symbol: null, of: o}};
 }
 / e:opEnclosure o:operand {
 return {enclosed: {mask: null, symbol: e, of: o}};
 }

32 ⁓ Implementation Architecture

⸻⸻
1 See https://github.com/pegjs/pegjs/issues/620.

(Enclosures will be discussed in Section 4.10)

When using the UnicodeMathML playground (more about it in Section 6.1), PEG.js automat-
ically converts the grammar into an in-memory parser as the playground loads.

var grammar = '<grammar source="" code,="" fetched="" using="" an="" xmlhttprequest="">';
ummlParser = peg.generate(grammar, {cache: ummlConfig.caching, trace: ummlConfig.tracing});

The playground allows the user to toggle caching and/or tracing (see Section 2.7.1) on or off.

Alternatively, opening ☁ /code/utils/generate-parser.html in any browser generates a
static parser (with caching enabled) that will show up wherever that browser stores down-
loads. It takes the form of a reasonably lightweight and transparently-structured Java-
Script file: Even ahead of possible postprocessing steps such as minimization and/or gzip-
ping, it weighs around 315 KB. When included into an HTML document, it provides a
function ummlParser.parse which – as the name suggests – takes a UnicodeMath expres-
sion, parses it and returns the resulting UnicodeMath AST.

3.2 UNICODEMATHML.JS
The ummlParser.parse function is called from within ☁/code/src/unicodemathml.js, which
does the rest of the work, most notably containing the implementation of the transforma-
tion step. It provides the unicodemathml function which funnels an input expression
through the entire UnicodeMathML pipeline, returning the resulting MathML code along
with intermediate data structures such as the UnicodeMath AST, a variant of the Unicode-
Math AST that's been preprocessed ahead of the transformation step, and the MathML
AST.

Before the UnicodeMath AST is available, three steps are performed in conjunction with
parsing.

3.2.1 CONTROL WORD SUBSTITUTION

If the variable ummlConfig.resolveControlWords is both set and true, any control words (see
Section 4.6 and Appendix B of the tech note) found in the input expression are replaced
with their corresponding Unicode character. This is done via a basic lookup in the
dictionary

var controlWords = {
 '\\above': '2534',
 '\\acute': '0301',
 '\\aleph': '2135',
 …
}

1

https://github.com/pegjs/pegjs/issues/620
https://github.com/pegjs/pegjs/issues/620

Noah Doersing ⁓ 33

⸻⸻
1 Determined by a Python script, see Section 6.3.
2 There are many way to split a JavaScript string s into characters. Conventionally, a programmer would likely
write s.split(""), however this method is unaware of the meaning of surrogate pairs (described in Section 2.4),
splitting a string into 16-bit substrings. Instead, Array.from(s) is Unicode-aware and thus functions correctly
here.

which maps backslash-preceded control words (in JavaScript strings, backslashes must be
escaped with backslashes) to Unicode code points. This step is optional since it's firmly
planted in input method territory – it's enabled by default in the playground, but disabled
by default in the Markdeep and HTML integrations.

In my implementation, control words in the input are expected to be terminated by a non-
alphabetic character or a space (which is removed during control word substitution).

3.2.2 ASTRAL MAPPING

As I will explore in Section 7.1.1, PEG.js has trouble with Unicode characters that lie outside
of the BMP, i.e., astral code points. The vast majority of symbols relevant for math are not
affected by this, however the Mathematical Alphanumeric Symbols block, which contains
various variants of Latin and Greek letters, is part of SMP, as are some emoji.

To get around this limitation, the astralPrivateMap variable defines a bijective mapping
between

the Mathematical Alphanumeric Symbols block and
a number of code point ranges corresponding to SMP-based emoji

and the BMP's Private Use Area. Here, code points are specified as hexadecimal numbers.

var astralPrivateMap = [
 {astral: {begin: 0x1D400, end: 0x1D7FF}, private: {begin: 0xE000, end: 0xE3FF}},
 {astral: {begin: 0x1F004, end: 0x1F004}, private: {begin: 0xE400, end: 0xE400}},
 {astral: {begin: 0x1F0CF, end: 0x1F0CF}, private: {begin: 0xE401, end: 0xE401}},
 …
 {astral: {begin: 0x1FA90, end: 0x1FA95}, private: {begin: 0xE803, end: 0xE808}}
];

Between control word substitution and parsing, the function mapToPrivate receives the in-
put and replaces any characters which fall into the range of any of the astralPrivateMap
entries with the corresponding Private Use Area code point.

3.2.3 PARSING

After control word substitution and astral mapping has been applied to the input, the Uni-
codeMath parser is let loose on it via a call of ummlParser.parse. I do believe that it is suffi-
ciently explained in the next chapter, so I won't get into any details here.

Note that the grammar rules for emoji and the the Mathematical Alphanumeric Symbols
block contain the Private Use Area ranges assigned during astral mapping.

1

2

34 ⁓ Implementation Architecture

⸻⸻
1 Note that both the original UnicodeMath expression as well as the variant where control words have been sub-
stituted are returned if they are not equal, in case the user has accidentally used the wrong control word some-
where. (It also allows the user to replace all control words in an expression with their meanings: append a slash
to the expression, which yields a syntax error, and copy the thusly Unicode-fied expression from the error
message.)
2 This is indicated by the ummlConfig.tracing boolean – it can be set via the UnicodeMathML playground's
interface.
3 Fancier tracers exist: https://github.com/okaxaki/pegjs-backtrace

If the parser throws an error, an appropriate error message is immediately returned to the
user.

3.2.3.1 TRACING

If tracing, described in Section 2.7.1, has been enabled by the user, the ummlParser.parse
function is called with an additional argument: a reference to a tracer. This is an object ex-
posing a trace function which the parser, whenever a grammar rule is entered, a match
succeeds, or a match fails, calls with an appropriate event object.

I've implemented a basic tracer, called SimpleTracer, which simply keeps a log of these
events. It is equipped with a function traceLogHTML which can format the log as HTML
code where matches and failures are highlighted – this is used to present traces in the
UnicodeMathML playground.

3.2.3.2 INVERSE ASTRAL MAPPING

If parsing was successful, the inverse of the previously discussed astral character replace-
ment function is mapped over the AST. It really pays that the AST is simply a JavaScript
object solely composed of lists, strings (as well as numbers, nulls and such – but they're
not relevant here) and further objects with the same constraints – the AST mapping func-
tion astMapFromPrivate is only a few lines long.

Inverse astral mapping is also applied to any error messages produced during parsing.

3.2.4 PREPROCESSING

I've been prototyping LaTeX code generation (more in Section 8.1) shortly before submission
of this thesis, which has prompted me to separate a number of desugarings and minor AST
transformations which are required no matter whether MathML, LaTeX or any other out-
put format is desired, from the main translation step.

This preprocessing step is mapped over the UnicodeMath AST before the actual transla-
tion commences. It has been implemented in the function preprocess and structured ana-
logously to the upcoming translation step.

In the next chapter, I will treat actions performed during this preprocessing step as being
part of the translation.

1

2

3

https://github.com/okaxaki/pegjs-backtrace

Noah Doersing ⁓ 35

⸻⸻
1 During preprocessing, any negatedoperators for which a dedicated Unicode symbol exist have been replaced
with an operator with the corresponding negated symbol.

3.2.5 TRANSLATING

The function mtransform is responsible for transforming the UnicodeMath AST into a
MathML AST (see the next section) and thus does most of the work translating Unicode-
Math to MathML. Since the UnicodeMath AST is a standard JavaScript object, this func-
tion function can be written as sketched below:

1 function mtransform(dsty, puast) {
2 if (Array.isArray(puast)) {
3 return {mrow: noAttr(puast.map(e �> mtransform(dsty, e)))};
4 }
5
6 var key = Object.keys(ast)[0];
7 var value = Object.values(ast)[0];
8
9 switch (key) {
10 …
11 case "expr":
12 return mtransform(dsty, value);
13 case "operator":
14 return {mo: noAttr(value)};
15 case "negatedoperator":
16 return {mo: noAttr(value + "/")};
17 …
18 }
19 }

If the input AST takes the form of a list (which it can, for example, in the recursive call of
line 12), Lines 2-4 recursively call mtransform on each list element. The results are emitted
in an mrow node with noAttributes in order to group them, since a MathML element further
up the call stack may expect a fixed number of child nodes.

The input variable dsty is short for displaystyle – as you may recall from Section 2.5, Math-
ML renderers make more liberal use of vertical space when rendering displaystyle expres-
sion. Not all of them support it sufficiently, though, so the translation step does a bit of
extra work for some constructs depending on the truthiness of dsty.

Line 16 exemplifies how negated operators are translated into MathML: a U+0338 COMBINING
LONG SOLIDUS OVERLAY is appended to the operator symbol, it will be superimposed over it during
rendering. The resulting string is returned as an mo AST node corresponding to MathML's
<mo> element. (Of course, not all transformations are this simple.)

1

36 ⁓ Implementation Architecture

3.2.6 PRETTY-PRINTING

The MathML AST directly corresponds to MathML code. Rather than explaining it, I will
show a slightly condensed example...

{"math": {
 "attributes": {
 "class": "unicodemath",
 "xmlns": "http://www.w3.org/1998/Math/MathML",
 "display": "block"},
 "content": {
 "mrow": {
 "attributes": {}, "content": [
 {"mrow": {
 "attributes": {}, "content": {
 "mrow": {
 "attributes": {}, "content": {
 "mi": {"attributes": {}, "content": "𝑎"}}}}}},
 {"mo": {"attributes": {}, "content": "+"}},
 {"mrow": {
 "attributes": {}, "content": {
 "mrow": {
 "attributes": {}, "content": {
 "mi": {"attributes": {}, "content": "𝑏"}}}}}}]}}}}

...and the MathML code generated from it:

<math class="unicodemath" xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 <mrow>
 <mi>𝑎</mi>
 <mo>+</mo>
 <mi>𝑏</mi>
 </mrow>
</math>

Notice that the MathML code contains fewer <mrow> tags than the MathML AST. since
<mrow> is predominantly used for grouping, similar to curly braces {} in LaTeX: in a^{b},
the braces can be omitted because they contain only a single character. In the same man-
ner, <mrow> tags that contain only a single child are superfluous, which is why my pretty-
printer strips them out.

3.3 NOTES ON MODULARIZATION
Towards the end of the thesis period, I considered splitting ☁/code/src/unicodemathml.js
into a number of files, each of which would be responsible for a portion of the pipeline
(e.g., one file for parsing-related functionality, another for preprocessing, etc.). This could
have been done

naïvely, by essentially moving each step into its own file and requiring the user to im-
port all files into an HTML document before being able to use UnicodeMathML, or
in a more sophisticated manner by using the

Noah Doersing ⁓ 37

⸻⸻
1 See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules.
2 More elaborate examples can be found here: https://github.com/mdn/js-examples/tree/master/modules
3 Especially since modules referenced not from the main document, but from another module, can only begin
loading once their parent modules have partially been loaded – browsers simply don't know about them before.

module system introduced in ECMAScript 6. While fairly new, this feature is widely
supported. Modules must be defined in .mjs files, any functions defined within them
may be made available to other modules using by prepending export to the functions'
signatures or via a single export statement:

…

export {a, b, c};

Importing functions from a different module works as follows:

import {d, e, f} from './modules/def.mjs';

Such modules can be loaded (or defined) using a normal &script> tag in HTML:

<script type="module" src="./modules/main.mjs"></script>
<script type="module">
 …
</script>

Splitting UnicodeMathML into modules would obviously be the proper way of doing
things, and it would allow leaving out parts of the pipeline as desired by the user (e.g., the
LaTeX code generation I prototyped, see Section 8.1). However, I eventually decided against
it for the following reasons:

unicodemathml.js is not that large – before minimization and/or gzipping, it weighs
only around 100 KB. Thus, any loading speed gains stemming from leaving any
presently-unneeded parts of the pipeline out would be negligible. What's more, the
network overhead from loading modules instead of one file would exceed any
savings.
ES6 modules do not work when served from the local file system in most browsers, so
one would need to spin up a local server (described at the top of Section 6.1), which
would make certain use cases more cumbersome. Further, modules are cached by
most browsers, and any changes to them might only take effect after telling the
browser from the server or emptying the browser's cache, which increases develop-
ment complexity.
Keeping everything in one file makes changes and basic refactorings easier.

Another idea: It's possible to “hide” all functions except for unicodemathml as shown below
– this is how parsers generated by PEG.js avoid polluting the global namespace. This
makes various debugging tasks a bit more cumbersome, though, so I decided against it for
now. I will likely do it once I release UnicodeMathML as free software (see Chapter 8),
though.

1

2

3

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://github.com/mdn/js-examples/tree/master/modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

38 ⁓ Implementation Architecture

(function(root) {
 …
 root.unicodemathml = unicodemathml;
})(window);

Note that I've kept the code such that it could be adjusted to match either of the ap-
proaches discussed in this section without much trouble.

With the architectural details now out of the way, let's focus on the interesting stuff: pars-
ing and translating.

Noah Doersing ⁓ 39

4
PARSING
UNICODEMATH AND
TRANSLATING IT INTO
MATHML
In this chapter, I will first present a simplified variant of my PEG.js-based UnicodeMath
grammar. Then, I will take you on a stroll though UnicodeMaths's constructs, explain their
syntax and how they are transformed into a UnicodeMath AST during parsing, then trans-
lated into a MathML AST, and finally pretty-printed as MathML code, ready for rendering.

In the context of this thesis, implementing a complete grammar for UnicodeMath that
generates a fast parser presented the greatest difficulty to me, the reasons for which I will
detail in Section 7.1.5 – translating it into MathML was the easy part, since UnicodeMath
maps to MathML relatively cleanly.

As I've already alluded to in the “Notes” section before the table of contents, I will be us-
ing a bespoke notation for various transformations. The example atop the next page docu-
ments how a basic UnicodeMath fraction is parsed into a UnicodeMath AST.

40 ⁓ Parsing UnicodeMath and Translating it Into MathML

⸻⸻
1 Note that the only context during transforming is the displaystyle variable, which is not shown in these dia-
grams to avoid visual clutter.
2 Although the ordering is different – in the tech note's grammar, the entry rule is found at the bottom, while the
grammar shown here begins with it. (This is simply because I found myself mentally traversing Sargent's gram-
mar from bottom to top more often than not.)
3 My grammar allows whitespace wherever possible, i.e., wherever one might be inclined to insert white space to
aid readability of expressions in plain text. Note that this differs from how whitespace is treated in Section 2.3 of
the tech note, but that description is more related to equation build-up as implemented in Microsoft's programs.

α/β ⟶ fraction:
 symbol: "/"
 of: ⟬αᴾ, βᴾ⟭

⟶
<mfrac>
 <mrow>αᵀ</mrow>
 <mrow>βᵀ</mrow>
</mfrac>

⟶

Here, α and β can be any substrings that the grammar permits in the numerator and de-
nominator positions of a fraction.

The letter P below the arrow indicates that parsing is the step performed next. Accord-
ingly, αᴾ (read this as “alpha parsed”) and βᴾ are the UnicodeMath AST subtrees that result
from parsing the previously named substrings, assuming no error has occurred (any error
stops the parse in its tracks). The AST is shown in a compact format which makes use of
indentation to indicate nesting in lieu of braces. ⟬⋯⟭ denotes a list (i.e., a JavaScript array)
– note that lists split across multiple lines use line breaks instead of commas as item sep-
arators. JavaScript null values are shown as ␀ (U+2400 SYMBOL FOR NULL).

Next, the T arrow indicates the translation and pretty-printing steps. The resulting Math-
ML code (shown without the enclosing <math> tag to save space) again contains appropri-
ately transformed variants αᵀ and βᵀ of the named subexpressions.

Finally, a rendered representation of the MathML code is presented towards the right of
the R arrow. For better correspondence to the input, named subexpressions are shown as α
instead of αᴿ.

4.1 GRAMMAR
The notation and level of detail of the following simplified and heavily commented gram-
mar is roughly based on the simplified grammar given in Appendix A of the tech note. In
some places, natural language is used to describe rules that are conceptually simple, but
awkward to read when expressed with formal grammar syntax. Some edge cases, as well as
markers for where arbitrary whitespace is allowed, have been omitted. Note that operator
precedence (see Section 3.22 of the tech note) is implicitly encoded within the grammar.

Semantic actions are not included here – how they construct an AST based on the Uni-
codeMath syntax encoded in this grammar is explained in the following sections, as previ-
ously noted. Accordingly, you might prefer to skim this grammar for now, referring to it as
required while reading on.

P T R

1

2

3

Noah Doersing ⁓ 41

Note that the full, unabridged grammar can be found at ☁/code/src/unicodemathml.pegjs.

Entry rule (discussed after this grammar)

unicodemath ← (exp "\n"?)+ eqnumber?
eqnumber ← "#" followed by arbitrary characters, until a line break

exp ← (element / operator)+
↪ The tech note specifies this rule as "element (operator element)∗", but in
my testing, this had no advantages, but it disallows some reasonable ex-
pressions such as -a+b.

Operators (discussed in Section 4.2).

operator ← mathspaces
/ basicoperator with any kind of script (see further down) attached
/ basicoperator

basicoperator ← negatedoperator / rawoperator
negatedoperator ← rawoperator preceded by a slash or followed by U+0338 COMBINING LONG SOLIDUS

OVERLAY
↪ In spite of not being mentioned in the tech note, negating operators by
attaching the diacritical mark U+0338 COMBINING LONG SOLIDUS OVERLAY looks better in
plain text: compare /+ with +.̸

rawoperator ← any character that's not recognized by the "atom" rule or used as a special operator
in any of the other rules

Constructs built around low-precedence operators – they are likely to be near the outermost level of an
expression imagined in tree form, and are thus – and because the greediness of PEG parsers requires this
– the object of one of the first parsing decisions.

element ← array / matrix / nary / phantom / smash / fraction / atop /
operand

Equation arrays and matrices (discussed in Section 4.3).

array ← "█(" arows ")"
arows ← arow ("@" arow)∗
arow ← exp? ("&" exp)∗

matrix ← "■(" mrows ")"
/ "⒨(" mrows ")" ⟿ syntactic sugar for parenthesized matrices

mrows ← mrow ("@" mrow)∗
mrow ← exp ("&" exp)∗

n-ary operations such as sums of integrals (discussed in Section 4.4). The bit mask may be used to modify
the layout of the integration limits. "▒" links the integral to its integrand.

nary ← opNary bitmask? (script / abscript)? "▒" element
opNary ← [∑∏∫∬∭⨌∮⋯]
bitmask ← [0-9]+

42 ⁓ Parsing UnicodeMath and Translating it Into MathML

↪ Bit masks are used in several places throughout the grammar, each time with
different meanings. The tech note mentions that a graphical user interface should
provide visual tools to generate these bit masks.

Phantoms and smashes (discussed in Section 4.5).

phantom ← "⟡(" bitmask "&" exp ")"
/ opPhantom "(" exp ")"

opPhantom ← "⟡" ⟿ standard phantom

/ "⬄" ⟿ horizonal phantom, like LaTeX's \hphantom
/ "⇳" ⟿ vertical phantom, like \vphantom

smash ← opSmash "(" exp ")"
opSmash ← "⬍" ⟿ standard smash

/ "⬆" ⟿ ascenders smash

/ "⬇" ⟿ descenders smash

/ "⬌" ⟿ horizontal smash

Various kinds of fractions (discussed in Section 4.6).

fraction ← [↉½⅓⅔¼¾⅕⅖⅗⅘⅙⅚⅐⅛⅜⅝⅞⅑]
↪ Note that this is non-standard – the tech note does not mention Unicode's
built-in vulgar fractions, but I think it's neat to support these as syntactical sugar.

/ (operand opFraction)+ operand
opFraction ← "/" ⟿ yields a normal fraction

/ U+2044 FRACTION SLASH ⟿ skewed fraction, e.g., ¹/₂

/ U+2215 DIVISION SLASH ⟿ linear fraction, e.g., 1/2

/ U+2298 CIRCLED DIVISION SLASH ⟿ small numeric fraction

atop ← (operand "¦")+ operand ⟿ e.g., ¹₂

/ operand "⒞" operand
↪ Syntactic sugar for binomial coefficients.

Medium-precedence constructs, comprising constructs which may occur inside scripts (and outside of
any script context, of course) as well as the three kinds of scripts themselves.

operand ← factor+
factor ← preScript

/ subsupScript
/ abovebelowScript
/ sfactor

↪ Covers various other constructs that can also occur within script exponents
(and outside of any script context, of course).

/ entity

Subscripts, superscripts and combinations thereof (discussed in Section 4.7). These are rather complicated
(or, rather, convoluted) because they are composed of 1. LaTeX-style scripts and 2. scripts made up from
subscripted and/or superscripted Unicode characters. These two types may be combined under certain
circumstances. Additionally, some of the rules in this block are reused for prescripts and *n*-ary
operations.

Noah Doersing ⁓ 43

subsupScript ← subsupSubsup
/ subsupSubscript
/ subsupSuperscript

script ← subsup / sub / sup ⟿ subscripts and superscripts without a base

scriptU ← subsupU / subU / supU ⟿ base-less Unicode scripts only

subsupSubsup ← scriptbase subsup
subsup ← subU (supU / supL)

/ supU (subU / subL)
/ subsupL

↪ This rule parses a subscript and a superscript (or vice versa), each
script can be a Unicode or LaTeX-style script.

subsupU ← subU supU
/ supU subU

↪ Analogous to the previous rule, but with Unicode scripts only.

subsupL ← subL supL
/ supL subL

↪ Analogous to the previous rule, but with LaTeX-style scripts only.

subsupSubscript ← scriptbase sub
sub ← subU / subL
subU ← unicodeSub
subL ← ("_" soperand)+ ⟿ allows for nested subscripts

subsupSuperscript ← scriptbase sup
sup ← supU / supL
supU ← unicodeSup
supL ← ("^" soperand)+ ⟿ allows for nested superscripts

Unicode subscripts and superscripts. Though not apparent here, their semantic actions ensure that the
generated AST matches LaTeX-style scripts. (In unicodemathml.pegjs, these rules are in a different sec-
tion of the grammar since they essentially constitute sub-parsers, i.e., they don't refer to other rules.)

nUnicodeSub ← ([₊₋]?) [₀₁₂₃₄₅₆₇₈₉]+ ⟿ numbers with an optional sign

opUnicodeSub ← "₊₋" ⟿ translated into ± (U+00B1 PLUS-MINUS SIGN)

/ "₋₊" ⟿ translated into ∓ (U+2213 MINUS-OR-PLUS SIGN)

/ [₊₋₌]
factorUnicodeSub ← nUnicodeSub

/ "₍" unicodeSub "₎"
elementUnicodeSub ← factorUnicodeSub+
unicodeSub ← (elementUnicodeSub / opUnicodeSub)+

nUnicodeSup ← ([⁺⁻]?) [⁰¹²³⁴⁵⁶⁷⁸⁹]+
atomsUnicodeSup ← [ⁱⁿ]+

↪ These letters are only available as superscripts because their sub-
scripted variants are not within the code point ranges given in Section
3.12 of the tech note.

44 ⁓ Parsing UnicodeMath and Translating it Into MathML

opUnicodeSup ← "⁺⁻" / "⁻⁺" ⟿ same deal as for subscripts

/ [⁺⁻⁼]
factorUnicodeSup ← atomsUnicodeSup

/ nUnicodeSup
/ "⁽" e:unicodeSup "⁾"

elementUnicodeSup ← factorUnicodeSup+
unicodeSup ← (elementUnicodeSup / opUnicodeSup)+

Prescripts, i.e., subscripts and superscripts preceding an expression (discussed in Section 4.8). These es-
sentially come for free due to how regular scripts have been defined.

preScript ← "(" script ")" operand
/ scriptU operand

↪ Unicode-only scripts can be directly adjacent to their base, with
no need for parentheses or a space to disambiguate. Note that this
is not specified in the tech note, but I thought it would be worth-
while – ₂x₂ is more clear than ₂ x₂, especially when surrounded by
more math.

/ script " " operand
↪ Mixed or LaTeX-style-only scripts do require a space between
prescript and base (in fact, if the script were to end with a Unicode
script, no space would be strictly required from a disambiguation
perspective – but that would be a bit of a mess to integrate into the
grammar.

Scripts above or below their base (discussed in Section 4.9). Note that due to syntactical similarities, this
part of the grammar looks somewhat similar to the section responsible for subscripts and superscripts.

abovebelowScript ← abovebelowAbovebelow
/ abovebelowAbove
/ abovebelowBelow

abscript ← abovebelow / above / below
↪ Above/below scripts without a base.

abovebelowAbovebelow ← scriptbase abovebelow
abovebelow ← "┬" soperand "┴" soperand ⟿ "below … above …"

/ "┴" soperand "┬" soperand ⟿ "above … below …"

abovebelowAbove ← scriptbase above
above ← "┴" (abovebelowAbove / soperand) ⟿ allows for

nesting

abovebelowBelow ← scriptbase below
below ← "┬" (abovebelowBelow / soperand) ⟿ allows for nesting

This rule parses the bases of all three kinds of scripts.

scriptbase ← "|" ⟿ enables using pipes as script bases

/ primed
/ primedbase

Noah Doersing ⁓ 45

Contents of scripts – note that this is related to the "operand" rule, but excludes most kinds of scripts. If
"operand" were used instead, PEG.js's greediness would make it impossible to parse expressions with
both a subscript and a superscript. Similar caveats are the reason for the order of alternatives in other
rules.

soperand ← sfactor+
/ basicOperator sfactor+ ⟿ enables expressions like ∫_-∞�+∞
/ basicOperator+ ⟿ enables expressions like ℕ�+

High-precendence constructs – this includes many of UnicodeMath's basic constructs. Due to the operat-
or precedence encoded within this grammar, they can all appear in fraction numerators and denominat-
ors, or in scripts.

sfactor ← enclosed
/ abstractbox
/ hbrack
/ root
/ function
/ text
/ sizeOverride
/ colored
/ comment
/ tt
/ scriptbase scriptU ⟿ enables expressions like W_δ₁ρ₁σ₂
/ primed
/ factorial
/ entity

Expressions enclosed in rectangles, circles, or similar shapes, and abstract boxes used to adjust spacing
and other parameters (discussed in Section 4.10). The bit mask can be used to assemble custom enclosures
from predefined components.

enclosed ← "▭(" bitmask "&" exp ")"
/ opEnclosure operand

opEnclosure ← "▭" / "○" / "▁" / "▢" / …

abstractbox ← "□(" bitmask "&" exp ")"
↪ Note that the abstract box operator □ is U+25A1 WHITE SQUARE, visually similar to yet
distinct from the enclosure operator ▭ (U+25AD WHITE RECTANGLE).

Stretchy horizontal brackets (discussed in Section 4.11) that may be placed above or below terms.

hbrack ← [⎴⏝⏞⋯] operand
↪ You might as well stop reading now: ⎴⏝⏞ is by far the cutest three-character
slice of this thesis. It's only downhill from here on out.

Roots of various degrees (discussed in Section 4.12).

root ← "√(" operand "&" exp ")" ⟿ roots with arbitrary degree

/ "√" exp "▒" operand ⟿ alternate notation for the same construct

/ "√" operand

46 ⁓ Parsing UnicodeMath and Translating it Into MathML

/ "∛" operand
/ "∜" operand

"Built-in" functions (discussed in Section 4.13).

function ← functionName funcApply (script " ")? operand
↪ The space is necessary to separate LaTeX-style scripts from the function
argument.

/ functionName operand
↪ For simple cases like sin(x).

functionName ← "sin" / "log" / … / "lim sup"
↪ There's 61 of these predefined function names.

funcApply ← U+2061 FUNCTION APPLICATION / "▒"

Plain text zones (discussed in Section 4.14). Roughly equivalent to LaTeX's \text{…}.

text ← a double quotation mark, followed by any number of non-quotation-mark characters
(but quotation marks escaped by a backslash are permitted), followed by a terminat-
ing double quotation mark
↪ The formal rule is a mess of quotation marks and escapes.

Font size adjustments (discussed in Section 4.15).

sizeOverride ← "Ⅎ" [A-D] (operand / basicOperator)

Non-standard extensions: colors, comments and typewriter font (discussed in Section 4.16).

colored ← "✎(" color "&" exp ")"
/ "☁(" color "&" exp ")"

color ← any string that does not contain "&"
↪ I've left it up to the MathML renderer to interpret these. Any color names or
notations legal in CSS appear to work in Safari, Firefox, and with MathJax.

comment ← "⫷" any string not containing ⫸ unless backslash-escaped "⫸"
tt ← "ￗ(" any string not containing a closing parenthesis unless backslash-escaped ")"

↪ Read ￗ as "tt", even though it's actually U+FFD7 HALFWIDTH HANGUL LETTER YU.

Identifiers and other constructs with one or many primes (discussed in Section 4.17).

primed ← primedbase prime+
primedbase ← entity

/ basicOperator
/ opNary

prime ← "'" (U+0027 APOSTROPHE)
/ "′" (U+2032 PRIME)
/ "″" (U+2033 DOUBLE PRIME)
/ "‴" (U+2034 TRIPLE PRIME)
/ "⁗" (U+2057 QUADRUPLE PRIME)

Single and double factorials (discussed in Section 4.18).

factorial ← entity opFactorial
opFactorial ← "‼" (U+203C DOUBLE EXCLAMATION MARK) / "!!" / "!"

Noah Doersing ⁓ 47

Highest-precedence constructs – including delimiter pairs, which are high-precedence operators with re-
gard to what's surrounding them, but low-precedence operators with respect to their contents (which are
recursively defined to be entire UnicodeMath expressions).

entity ← atoms
/ doublestruck
/ number
/ expBracket

Identifiers: single characters or words, potentially with diacritical marks (discussed in Section 4.19).

atoms ← atom+
atom ← diacriticized

/ "\" .
↪ Preceding any character with a backslash, in its function as the "literal oper-
ator", removes any UnicodeMath-specific meaning from that character and
renders it as an operator.

/ αn
/ mathspaces

↪ Spaces can be used as null arguments, for example in script bases, to steer
kerning. An example of this usage can be found towards the end of Section 3.16
of the tech note.

Diacriticized characters, numbers, and expressions.

diacriticized ← diacriticbase diacritics
diacriticbase ← αn ⟿ single character

/ nn ⟿ single-digit number

/ "(" exp ")" U+00A0 NO-BREAK SPACE?
↪ The optional non-breaking space may be used to visually decouple diacritics
(which are usually merged with the preceding character by text renderers – even
in code-focused text editors) from the closing parenthesis.

diacritics ← diacritic+
diacritic ← [\u0300-\u036F\u20D0-\u20FF]

↪ Unicode's "Combining Diacritical Marks" and "Combining Diacritical Marks
for Symbols" blocks.

αn ← αnMath / αnOther / emoji
αnMath ← [\uE000-\uE3FF\u2102-\u2131\u2133\u2134]

↪ Math variants of (mostly) Latin and Greek letters, some of which have been
mapped into the BMP's "Private Use Area" block as described in Section 3.2.2.

αnOther ← Latin and Greek letters
↪ Note that ideally, all code points in Unicode's L∗ categories should be included
here, but JavaScript's implementation of regular expressions provides no built-in
method for matching specific Unicode categories.

emoji ← a giant regular expression matching all currently-defined emoji
↪ Some emoji have been mapped into the BMP's "Private Use Area" block. Note
that whether a character is an emoji sometimes depends on context, as discussed
in Section 7.1.2.

48 ⁓ Parsing UnicodeMath and Translating it Into MathML

Math spaces, see Section 3.16 of the tech note.

mathspaces ← mathspace+
mathspace ← U+200B ZERO WIDTH SPACE ⟿ 0/18 em

/ U+200A HAIR SPACE ⟿ 1/18 em

/ twice U+200A HAIR SPACE ⟿ 2/18 em

/ U+2009 THIN SPACE ⟿ 3/18 em

/ …
/ U+2002 EN SPACE ⟿ 1/2 em

/ U+2003 EM SPACE ⟿ 1 em

/ U+2007 FIGURE SPACE ⟿ digit-width space

↪ Note that there is no pre-defined digit width in MathML. The only font-
agnostic way of producing a digit-width space in MathML is to take a digit
and wrap it within a phantom – so that's what I implemented.

/ U+00A0 NO-BREAK SPACE ⟿ space-width space

Numbers, e.g., 1.2 or 3 or .4.

number ← opDecimal digits
/ digits opDecimal digits
/ digits

digits ← nn+
nn ← [0-9]

↪ Note that ideally, all code points in Unicode's Nd category should be in-
cluded here, but JavaScript's implementation of regular expressions provides
no built-in method for matching specific Unicode categories.

Differential operators (Euler's and Leibnitz's notation), Euler's number, and imaginary units.

doublestruck ← [ⅅⅆⅇⅈⅉ]

Delimited or bracketed expressions (simplified compared to the real grammar, discussed in Section 4.20).

expBracket ← ("||" / "‖") exp ("||" / "‖") ⟿ vector norm

/ "|" exp "|" ⟿ absolute value

/ op:expBracketOpen (exp / " "+) cl:expBracketClose
/ "©(" arows ")" { ⟿ syntactic sugar for cases

expBracketOpen ← "〖" ⟿ invisible, used for grouping

/ opOpen
/ "├" bitmask? (opOpen / opClose / "|" / "‖") ⟿ bracket size

override

opOpen ← [([{⟨⌈⌊]
expBracketClose ← "〗" ⟿ invisible, used for grouping

/ opClose
/ "┤" bitmask? (opOpen / opClose / "|" / "‖")

opClose ← [)}⟩⌉⌋]]

Now that the structure of the grammar should be clear (or as clear as eight pages of a

Noah Doersing ⁓ 49

flattened, mostly topologically sorted graph can be), I will explain how the UnicodeMath
AST is built up in the grammar's myriad semantic actions and translated to MathML.

This explanation will be based on a non-exhaustive set of examples – non-interesting
cases, or ones that are similar to previously discussed cases, will not be separately dis-
cussed. Further, certain implementation details will be omitted simply because they are
not particularly interesting.

First, consider the entry rule unicodemath. In Section 3.21 of the tech note, quoth Sar-
gent: “To represent an equation number flushed right of the equation in UnicodeMath,
[the user must] enter the equation followed by a # [...] followed by the desired equation
number text.” [Sargent16]

α #β ⟶ unicodemath:
 content: αᴾ
 eqnumber: β

⟶

<math class="unicodemath"
 xmlns="http://www.w3.org/1998/Math/MathML"
 display="block">
 <mtable>
 <mlabeledtr id="β">
 <mtd>
 <mtext>β</mtext>
 </mtd>
 <mtd>
 αᵀ
 </mtd>
 </mlabeledtr>
 </mtable>
</math>

MathML provides no direct means of annotating an expression with an equation number,
so the expression must be inserted into an <mtable>, with the equation number wrapped in
an <mlabeledtr> tag. My translator sets a cleaned version of β as the value of the id attrib-
ute – while nothing of the sort is specified in the tech note, this makes the equation
uniquely identifiable via JavaScript or other means, in case the user desires to apply fur-
ther transformations to it.

Rendered by MathJax (neither Safari nor Firefox support them properly), an equation
number defined as …#[42] looks like this:

4.2 OPERATORS
A rawoperator like + is translated as shown below. Note that some operator sequences are
mapped to Unicode characters that more closely resemble their meaning – for example, +-
is mapped to ± (U+00B1 PLUS-MINUS SIGN), U+002A ASTERISK is turned into the vertically centered U+2217
ASTERISK OPERATOR, and the ASCII character U+002D HYPHEN-MINUS becomes U+2212 MINUS SIGN.

P T

50 ⁓ Parsing UnicodeMath and Translating it Into MathML

α+β ⟶
expr: ⟬
 αᴾ
 operator: "+"
 βᴾ
 ⟭

⟶
<mrow>
 <mi>αᵀ</mi>
 <mo>+</mo>
 <mi>βᵀ</mi>
</mrow>

⟶

If a “native” Unicode version of a negatedoperator (refer to grammar for how they can be
input) exists, it is converted accordingly during preprocessing (e.g., /∃ becomes U+2204 THERE
DOES NOT EXIST). Otherwise, the diacritical mark U+0338 COMBINING LONG SOLIDUS OVERLAY is superimposed
over the operator.

4.3 EQUATION ARRAYS & MATRICES
The grammar rules for equation arrays and matrices are identical – except for their lead-
ing operator, which is █ (U+2588 FULL BLOCK) for arrays and ■ (U+25A0 BLACK SQUARE) for matrices – but
their semantics differ:

UnicodeMath matrices consist of @-separated rows, each of which contains &-separated
values. For example, the UnicodeMath expression (■(1&2&3@4&5&6@7&8&9@10)) renders as

Since such parenthesized matrices are common, UnicodeMath includes syntactic sugar for
them. The given example could also have been formulated as ⒨(1&2@3&4), whose operator
is U+24A8 PARENTHESIZED LATIN SMALL LETTER M.

In MathML, matrices can be expressed using <mtable>s which, analogously to HTML
<table>s, contains rows within <mtr> elements and column values in <mtd> tags. Note that
all MathML renderers display tables where the column count differs among rows “cor-
rectly”, i.e., missing columns are implicitly treated as being empty (instead of resulting in
an error), as is the case in the example above.

Equation arrays also consist of @-separated rows, but their rows have semantics inspired
by LaTeX's align environment, as noted in Section 3.19 of the tech note: “Here the mean-
ing of the ampersands alternate between align and spacer, with an implied spacer at the
start of the line. So every odd & is an alignment point and every even & is a place where
space may be added to align the equations.” [Sargent16] In my implementation, this division
of ampersands into alignment points and spacers is performed in the preprocessing stage.
For example, the UnicodeMath expression █(10&x+&3&y=2@3&x+&13&y=4) should render as
follows:

P T R

Noah Doersing ⁓ 51

⸻⸻
1 See https://www.w3.org/TR/MathML3/chapter3.html#presm.malign.

(Note that MathJax inserts too much space between the two columns – Firefox's built-in
renderer does better.) However, the visual example has been aligned manually (with a
bunch of varying-width space): In MathML, the <malignmark> element is intended to be
used for such alignment purposes. Sadly, no renderer seems to implement it – as a result,
equation arrays are rendered like matrices, i.e., the alignment points are ignored.

Here are two basic examples of matrices and arrays:

[■(α&β@γ&δ)] ⟶

bracketed:
 open: "["
 close: "]"
 content:
 expr: ⟬
 matrix:
 mrows: ⟬
 mrow: ⟬αᴾ, βᴾ⟭
 mrow: ⟬γᴾ, δᴾ⟭
 ⟭
 ⟭

⟶

<mfenced open="[" close="]">
 <mtable>
 <mtr>
 <mtd>αᵀ</mtd>
 <mtd>βᵀ</mtd>
 </mtr>
 <mtr>
 <mtd>γᵀ</mtd>
 <mtd>δᵀ</mtd>
 </mtr>
 </mtable>
</mfenced>

⟶

█(10&x+&3&y=2@3&x+&13&y=4) ⟶

<mtable>
 <mtr>
 <mtd>
 <mn>10</mn>
 <malignmark edge="left" />
 <mrow>
 <mi>𝑥</mi>
 <mo>+</mo>
 </mrow>
 </mtd>
 <mtd>
 <mn>3</mn>
 <malignmark edge="left" />
 <mrow>
 <mi>𝑦</mi>
 <mo>=</mo>
 <mn>2</mn>
 </mrow>
 </mtd>
 </mtr>
 <mtr>
 …
 </mtr>
</mtable>

⟶

1

P T R

P&T R

https://www.w3.org/TR/MathML3/chapter3.html#presm.malign
https://www.w3.org/TR/MathML3/chapter3.html#presm.malign

52 ⁓ Parsing UnicodeMath and Translating it Into MathML

⸻⸻
1 See https://www.cs.bgu.ac.il/~khitron/Equation%20Editor.pdf.

4.4 N-ARY OPERATIONS
Integrals and sums are the most common n-ary operations – but n-ary products, set uni-
ons, logical conjunctions and others also exist. As shown in the grammar a couple of
pages ago, UnicodeMath uses the special operator ▒ (U+2592 MEDIUM SHADE) to link the n-ary op-
eration with its operand (dubbed n-aryand by Sargent). Further, a bit mask may be input
between the n-ary operator and the script defining its limits.

Consider the binomial theorem, which can be expressed as (a + b)^n = ∑1_(k=0)^n▒(n¦k)
a^k b^(n-k) in UnicodeMath:

The 1 in …∑1_(k=0)^n▒… ensures that the limits are shown above and below the operator,
even though they are specified as subscript and superscript. Other bit mask values can in-
stead force the limits to display as subscript and superscript (or just treat the upper limit
this way) or they can show placeholders when a script is missing. Section 3.4 of the tech
note gives an overview of the possible bit masks.

(Note that MathJax renders abovescripts and belowscripts (see Section 4.9) as subscripts and
superscripts if 1. the base is an n-ary operator and 2. textstyle mode is active, which hap-
pens to be the case for these examples for technical reasons.)

∑┬α▒β ⟶

nary:
 mask: ␀
 limits:
 script:
 type: "abovebelow"
 base:
 opnary: "∑"
 low: αᴾ
 naryand: βᴾ

⟶

<mrow>
 <munder>
 <mo>∑</mo>
 αᵀ
 </munder>
 βᵀ
</mrow>

⟶

∮16_α▒β ⟶

nary:
 mask: 16
 limits:
 script:
 type: "subsup"
 base:
 opnary: "∮"
 low: αᴾ
 naryand: βᴾ

⟶

<mrow>
 <msubsup>
 <mo>∮</mo>
 αᵀ
 <mo>⬚</mo>
 </msubsup>
 βᵀ
</mrow>

⟶ ⬚

1

P T R

P T R

https://www.cs.bgu.ac.il/~khitron/Equation%20Editor.pdf
https://www.cs.bgu.ac.il/~khitron/Equation%20Editor.pdf

Noah Doersing ⁓ 53

⸻⸻
1 In the same post, he writes about how “some colleagues and I had the good fortune to spend an extraordinary
afternoon with Donald Knuth, the primary author of TeX, at his home on the Stanford University campus. Among
many things, Donald showed us how he uses TeX to typeset his computer-science papers and books exactly the
way he wants them to look. In particular, he applies special tweaks to achieve perfection, such as ‘smashing the
descender’ on one radicand to make a sum of square roots line up in a pleasing way, and such as shimming char-
acters to place them more beautifully in a formula.” [Sargent11]
2 Note that Safari presently does not support <mpadded> properly: If its width and height attributes are set to 0,
the content of the element is not visible, even though it should be.

If no script is defined, a dummy script is created during parsing and – if no placeholder-
inserting bit mask like in the previous example is specified – removed upon translation to
MathML:

⨄▒α ⟶

nary:
 mask: ␀
 limits:
 script:
 type: "subsup"
 base:
 opnary: "⨄"
 naryand: αᴾ

⟶
<mrow>
 <mo>⨄</mo>
 αᵀ
</mrow>

⟶

4.5 PHANTOMS & SMASHES
Although they are not the most frequently used tools, phantoms and smashes come in
handy when “one wants to obtain horizontal and/or vertical spacings that differ from the
normal values” [Sargent16]. For example, in one of Murray Sargent's blog posts, he presents
a variant of the mode locking equation

noting that “you can see that there's a little too much room between the and the integ-
rand. You can pull the integrand to the left under the by ‘smashing’ its width. Inside the
upper limit, you type [2⬌(π)], and the displays, but has no horizontal width” [Sargent11]
as in

In MathML, simple phantoms are represented using the <mphantom> elements. Horizontal
and vertical phantoms also require the <mpadded> element, as do smashes. In this section,
I will show three examples: A simple phantom that does not render but takes up space, a
vertical phantom that does not render and takes up only vertical space, and a horizontal
smash that renders its argument but makes it take up no space.

P T R

1

2

54 ⁓ Parsing UnicodeMath and Translating it Into MathML

α⟡(β)γ ⟶

expr: ⟬
 αᴾ
 phantom:
 mask: ␀
 symbol: "⟡"
 of: βᴾ
 γᴾ
 ⟭

⟶

<mrow>
 αᵀ
 <mphantom>
 βᵀ
 </mphantom>
 γᵀ
</mrow>

⟶

α⇳(β)γ ⟶

expr: ⟬
 αᴾ
 phantom:
 mask: ␀
 symbol: "⇳"
 of: βᴾ
 γᴾ
 ⟭

⟶

<mrow>
 αᵀ
 <mpadded width="0">
 <mphantom>
 βᵀ
 </mphantom>
 </mpadded>
 γᵀ
</mrow>

⟶

α⬌(β)γ ⟶

expr: ⟬
 αᴾ
 smash:
 symbol: "⬌"
 of: βᴾ
 γᴾ
 ⟭

⟶

<mrow>
 αᵀ
 <mpadded width="0">
 βᵀ
 </mpadded>
 γᵀ
</mrow>

⟶

Bit masks allow equation authors to build their own phantom-smash combinations – this
is explored in Section 3.17 of the tech note.

4.6 FRACTIONS
UnicodeMath defines four types of fractions:

Normal fractions, denoted by a standard forward slash (U+002F SOLIDUS) and rendered as

.
Skewed fractions, whose operator is U+2044 FRACTION SLASH, and which render as .
Linear fractions, written with U+2215 DIVISION SLASH, and rendered as . Alternatively,
they can be entered by preceding a standard forward slash with a backslash – this
way, the size of the slash can be adjusted as required (see Section 4.15 for a discussion of
size overrides). For example, the fraction slash in the following formula, taken from
page 57 of the digital typography book, is denoted as ℲB\/ in UnicodeMath.

P T R

P T R

P T R

Noah Doersing ⁓ 55

Small numeric fractions, written using U+2298 CIRCLED DIVISION SLASH, and rendered a bit
smaller than normal fractions: compare and .

In all four cases, the outermost parentheses of numerator and denominator are removed
during translation to enable intuitive grouping. This is described in Section 2.1 of the tech
note. Also note that “fraction operators have left-to-right associativity as in common pro-
gramming languages like C/C++/C#.” [Sargent16]

MathML provides the <mfrac> element which must contain two children and renders as a
normal fraction by default. If the optional bevelled attribute is set to true, a skewed frac-
tion is displayed instead. UnicodeMathML handles linear fractions by inserting <mo>/</mo>
between numerator and denominator. Here's an example:

α/β∕γ ⟶

fraction:
 symbol: "∕"
 of: ⟬
 fraction:
 symbol: "/"
 of: ⟬αᴾ, βᴾ⟭
 γᴾ
 ⟭

⟶

<mrow>
 <mfrac>
 αᵀ
 βᵀ
 </mfrac>
 <mo>/</mo>
 γᵀ
</mrow>

⟶

The translation of small numeric fractions into MathML is achieved by emitting an
<mfrac> nested inside an <mstyle> that locally modifies the font size:

α⊘β ⟶
fraction:
 symbol: "∕"
 of: ⟬αᴾ, βᴾ⟭

⟶
<mstyle fontsize="0.8em">
 <mfrac>
 αᵀ
 βᵀ
 </mfrac>
</mstyle>

⟶

P T R

P T R

56 ⁓ Parsing UnicodeMath and Translating it Into MathML

4.7 SUBSCRIPTS & SUPERSCRIPTS

“ A mathematician spends a lot of time choosing notations for things, and one
of the things we try to avoid in mathematics is double subscripts. I read one
French Ph.D. thesis where the author had �ve levels of subscripts [laughter] – he
kept painting himself into a corner. He started out with a set , so
then when he talked of a subset, it had to be , and then he
wanted to take a subset of this; �nally he had a theorem that referred to ‘

’. [laughter] ”
— Donald Knuth in a Q&A session, from page 643 of the digital typography book [Knuth99]

I'm self-aware enough to realize that exhaustively explaining how subscripts and super-
scripts are parsed might make you want to murder me, so instead, I will briefly describe
the reasoning behind the general approach before presenting a couple of examples.

“Scripted” expressions as recognized by my UnicodeMath parser can have

one script: a superscript or a subscript, this case is not very interesting either way;
two scripts: a superscript and a subscript or vice versa, this case is more interesting; or
many scripts: a string of superscripts or subscripts, or a string of superscripts and a
string of subscripts or vice versa; this case is an extension of the previous one.

There are two kinds of subscripts and superscripts which can be used interchangeably in
some contexts, but not in others. The first uses the notation known from LaTeX: “[W]e in-
troduce a subscript by a subscript operator, which we display as the ASCII underscore _ as
in TeX. Similarly, superscripts are introduced by a superscript operator, which we display
as the ASCII ^ as in TeX.” [Sargent16] The outermost set of parentheses within a script is
eliminated here in the same manner as it is done for fractions, but parentheses around the
base of a script remain untouched – if they are needed to ensure correct grouping when
formulating the base expression in UnicodeMath, they are likely also helpful to the reader
as they disambiguate the “scope” of the script, as in the following example taken from
page 43 of the digital typography book (it's part of a derivation of curves used for letter
drawing in Knuth's Metafont):

The second kind of subscripts and superscripts takes advantage of the “Unicode” in “Uni-
codeMath”: “Unicode contains a small set of mostly numeric superscripts [such as U+00B9
SUPERSCRIPT ONE, U+00B2 SUPERSCRIPT TWO, and U+00B3 SUPERSCRIPT THREE] and a similar set of subscripts [...]
that should be rendered the same way that scripts of the corresponding script nesting
level would be rendered.” [Sargent16] “The numeric subscripts and superscripts are often

Noah Doersing ⁓ 57

used and can streamline the look of technical plain text.” [Sargent16b]

Taking a closer look at the “two scripts” case from above,

if the first script is a Unicode script, the second script can be another Unicode script
or a LaTeX-style script, but
if the first script is a LaTeX-style script, the second script must be one too.

This is not an arbitrary limitation: It enables the use of Unicode scripts within LaTeX-style
scripts. For example, the UnicodeMath expression W_δ₁ρ₁σ₂^3β should render as

instead of

Note that this mini-algorithm is not given in the tech note, I was required to come up with
it myself in order to correctly render several examples. It does not allow expressions like
xⁱ^2, but such expressions are ambiguous, anyway. Refer to Table 2 for a number of nota-
tionally non-trivial examples and how they are rendered by UnicodeMathML and MathJax.

UnicodeMath Rendered MathML

a^*

a_b^c

a₁^b

a^b₁

a^1_2_3_4

a^(1_2)_3_4

a₉�+-b₁

W_δ₁ρ₁σ₂^3β

mⁿ₋₃₌₍₂₋₅₎

Table 2: Some superscripts and subscripts.

In MathML, superscripted expressions can be expressed with the <msup> tag, which must
have two children: the base first, then the exponent. <msub> functions equivalently for
subscripts, and <msubsup> similarly accepts the base first, the expression to be subscripted
next, and finally the exponent.

Since the grammar rules responsible for recognizing subscripts and superscripts are re-
used for prescripts and n-ary operations (and must sometimes be converted to or from

58 ⁓ Parsing UnicodeMath and Translating it Into MathML

above-/belowscripts, as mentioned in Section 4.4 and Section 4.9), the AST built up during
parsing has been kept purposefully clean. Also, Unicode scripts yield the same AST as the
equivalent LaTeX-style script.

α_β^γ ⟶
script:
 type: "subsup"
 base: αᴾ
 low: βᴾ
 high: γᴾ

⟶
<msubsup>
 αᵀ
 βᵀ
 γᵀ
</msubsup>

⟶

α₄₂�+-β₁ ⟶

script:
 type: "subsup"
 base: αᴾ
 low:
 expr: ⟬
 number: "42"
 ⟭
 high: ⟬
 operator: "±"
 script:
 type: "subsup"
 base: βᴾ
 low:
 expr: ⟬
 number: "1"
 ⟭
 ⟭

⟶

<msubsup>
 αᵀ
 <mn>42</mn>
 <mrow>
 <mo>±</mo>
 <msub>
 βᵀ
 <mn>1</mn>
 </msub>
 </mrow>
</msubsup>

⟶

4.8 PRESCRIPTS
Prescripts are subscripts and/or superscripts attached to the left side of an expression. In
UnicodeMath, their syntax is equivalent to the subscript/superscript syntax, which en-
ables reuse of the existing grammar rules for subscripts and superscripts, but also requires
them to be separated from their base

either by a space, as in _α^β γ,
or by being surrounded with a set of parentheses, as in (^β_α)γ;

both variants render as . Without a separator, the base would in most cases be indistin-
guishable from the script. Note that if only Unicode scripts are present, no separator is
needed: ¹₂3 renders as .

P T R

P T R

Noah Doersing ⁓ 59

⸻⸻
1 See https://www.youtube.com/watch?v=9ua2RWL5big.

MathML's <mmultiscripts> element can be used to denote prescripts:

_β^γ α ⟶
script:
 type: "pre"
 base: αᴾ
 prelow: βᴾ
 prehigh: γᴾ

⟶
<mmultiscripts>
 αᵀ
 <mprescripts />
 βᵀ
 γᵀ
</mmultiscripts>

⟶

“Variables can have both prescripts and postscripts (ordinary subscripts and superscripts)”
[Sargent16], which, while conceptually obvious, requires prescripts and postscripts to be
merged into a single script – a multiscript (hence the name of the MathML element).

(_β^γ)α_δ^ε ⟶

script:
 type: "pre"
 base:
 script:
 type: "subsup"
 base: αᴾ
 low: δᴾ
 high: εᴾ
 prelow: βᴾ
 prehigh: γᴾ

⟶

script:
 type: "pre"
 base: αᴾ
 prelow: βᴾ
 prehigh: γᴾ
 low: δᴾ
 high: εᴾ

⟶

<mmultiscripts>
 αᵀ
 δᵀ
 εᵀ
 <mprescripts />
 βᵀ
 γᵀ
</mmultiscripts>

⟶

Without such a merging step, the UnicodeMath expression ^1_2 n^3_4 would render as

Note that one could, if so inclined, represent the Wilhelm scream in UnicodeMath with a
prescript and a string of subscripts:

P T R

P …

T R

1

https://www.youtube.com/watch?v=9ua2RWL5big
https://www.youtube.com/watch?v=9ua2RWL5big

60 ⁓ Parsing UnicodeMath and Translating it Into MathML

⸻⸻
1 If only a subscript is present, this is done by changing the type attribute of its AST node. If a superscript is in-
cluded, subscript and superscript are separated into two AST nodes first, with the new belowscript node nested
around the function name and its superscript.

4.9 ABOVE/BELOW SCRIPTS
The third kind of script supported by UnicodeMath comprises belowscripts and
abovescripts, which are represented by the line drawing operators ┬ (U+252C BOX DRAWINGS LIGHT
DOWN AND HORIZONTAL) and ┴ ___(U+2534). They can be repeated and nested in the same manner
as LaTeX-style subscripts and superscripts.

The MathML elements <mover>, <munder> and <munderover> are the above/below script
equivalents of <msup>, <msub> and <msubsup>.

α┬β┴γ ⟶
script:
 type: "abovebelow"
 base: αᴾ
 low: βᴾ
 high: γᴾ

⟶
<munderover>
 αᵀ
 βᵀ
 γᵀ
</munderover>

⟶

In accordance with Section 3.3 of the tech note, if the displaystyle flag is set, subscripts
attached to a function apply operator that follows the function names “det, gcd, inf, lim,
lim inf, lim sup, max, min, Pr, and sup” [Sargent16] are transformed into belowscripts. For
example, the UnicodeMath expression lim▒_(n→∞) a_n renders as within a
paragraph, but as

when it stands on its own.

Many of Unicode's arrow characters, when placed over or under an expression, will stretch
to fit its width, provided they are wrapped in an <mo stretchy="true"> tag. It works the
other way around, too. For example, he nonsensical expression 123┴↔ + ↔┴123 renders as

One could, if so inclined, replicate the Unicode character ≝ (U+225D EQUAL TO BY DEFINITION) with the
UnicodeMath expression =┴"def":

4.10 ENCLOSURES & ABSTRACT BOXES
Sometimes, it's useful to highlight a subexpression by circling it, underlining it or drawing
a rectangle around it. UnicodeMath addresses this demand with enclosures, which can be

P T R

1

≝

Noah Doersing ⁓ 61

⸻⸻
1 See https://developer.mozilla.org/en-US/docs/Web/MathML/Element/menclose#Attributes.

summoned by using one of two syntaxes.

When using the first syntactic variant, one of the enclosure operators – among which are
▭ (U+25AD WHITE RECTANGLE), ○ (U+25CB WHITE CIRCLE), ▁ (U+2581 LOWER ONE EIGHTH BLOCK), and ▢ (U+25A2 WHITE SQUARE
WITH ROUNDED CORNERS) – must precede an operand. This results in an enclosure matching the
shape of the operator placed around the operand. If the operand is a parenthesized ex-
pression, the outermost parentheses are removed in the process. For example, ▢ (a+b)
renders as

Alternatively, the other variant allows the standard rectangle operator U+25AD WHITE RECTANGLE
to be paired with a bit mask. This allows the construction of user-defined enclosures as
follows:

▭(1&α) yields ,
▭(2&α) yields ,
▭(4&α) yields ,
▭(8&α) yields ,
▭(16&α) yields ,
▭(32&α) yields ,
▭(64&α) yields , and
▭(128&α) yields .

Note that these flags can be combined (i.e., added up) as desired, e.g., ▭(19&α) yields .
No matter which notation is used, MathML's <menclose notation="…"> element is the tool
for the job – which enclosure is drawn during rendering depends on the value assigned to
the notation attribute.

○α ⟶
enclosed:
 mask: ␀
 symbol: "○"
 of: αᴾ

⟶ <menclose notation="circle">
 αᵀ
</menclose>

⟶

▭(192&α) ⟶
enclosed:
 mask: 192
 symbol: ␀
 of: αᴾ

⟶
<menclose notation="updiagonalstrike
 downdiagonalstrike">
 αᵀ
</menclose>

⟶

Note that enclosures need not be composed of black lines – they inherit the current text
color, which can be set as explained in Section 4.16.

Briefly mentioned in Section 3.7 of the tech note, “an abstract box can be put around an
expression [...] to change alignment, spacing category, size style [sic], and other proper-
ties.” [Sargent16] The syntax of abstract boxes is equivalent to the bit mask variant of

1

P T R

P T R

https://developer.mozilla.org/en-US/docs/Web/MathML/Element/menclose#Attributes
https://developer.mozilla.org/en-US/docs/Web/MathML/Element/menclose#Attributes

62 ⁓ Parsing UnicodeMath and Translating it Into MathML

enclosures, except the operator □ (U+25A1 WHITE SQUARE) is used. I have not fully implemented
abstract boxes for the reasons detailed in Section Section 7.1.3.

Apropos of nothing: here's an enclosure-powered drawing of a spider about to have a
snack.

4.11 HORIZONTAL BRACKETS
Introduced in Section 3.8 of the tech note, stretchy horizontal brackets may be used to
group...

...or annotate expressions. For example, overbraces can be used to indicate how many
times something repeats:

These brackets come in two flavors:

Those that render above the expression they precede: ⏜ (U+23DC TOP PARENTHESIS), ⏞ (U+23DE TOP
CURLY BRACKET), ⏠ (U+23E0 TOP TORTOISE SHELL BRACKET), ⎴ (U+23B4 TOP SQUARE BRACKET), and ¯ (U+00AF MACRON).
Ones that display below their argument: ⏝ (U+23DD BOTTOM PARENTHESIS), ⏟ (U+23DF BOTTOM CURLY
BRACKET), ⏡ (U+23E1 BOTTOM TORTOISE SHELL BRACKET), and ⎵ (U+23B5 BOTTOM SQUARE BRACKET).

If the expression following the bracket does not possess a script, the bracket is simply
placed above or below it (sans outermost parentheses) via MathML's <mover> or <munder>.
In order to convince MathML renderers to stretch the bracket along the expression, it
needs to be wrapped in an <mo stretchy="true"> tag.

⏜α ⟶ hbrack:
 bracket: "⏜"
 of: αᴾ

⟶
<mover>
 αᵀ
 <mo stretchy="true">⏜</mo>
</mover>

⟶

When such a lower bracket is followed by a subscripted (or belowscripted) expression, the
subscript is converted into a belowscript and the bracket is inserted between it and its
base. Note that the outermost level of parentheses around the base is removed as part of

🕷
🦟

P T R

Noah Doersing ⁓ 63

this transformation. (Upper brackets are treated analogously.)

⏟α_β ⟶

hbrack:
 bracket: "⏟"
 of:
 script:
 type: "subsup"
 base: αᴾ
 low: βᴾ

⟶

<munder>
 <munder>
 <mi>αᵀ</mi>
 <mo stretchy="true">⏟</mo>
 </munder>
 <mi>βᵀ</mi>
</munder>

⟶

4.12 ROOTS
UnicodeMath comes with five kinds of root-related notation:

square roots √α which render as ,
th-degree roots √(n&α), which render as

another notation for th-degree roots √n▒α, which renders in the same way,
cube roots ∛α, which I implemented as syntactic sugar that resolves to √(3&α), and
fourth roots ∜α, which are analogously sweet.

Apart from the removal of outermost parentheses from the argument, there's no trickery
or special cases required when translating them into MathML, so they are not particularly
interesting – here's how two examples make it through the pipeline:

√α ⟶ sqrt: αᴾ ⟶
<msqrt>
 αᵀ
</msqrt>

⟶

√(δ&α) ⟶
root:
 degree: δᴾ
 of: αᴾ

⟶
<mroot>
 αᵀ
 δᵀ
</mroot>

⟶

4.13 FUNCTIONS
Section 2.5 of the tech note prescribes that “[m]athematical functions such as trigonomet-
ric functions like ‘sin’ should be recognized as such and not italicized. [...] In addition it’s
desirable to follow them with the Invisible Function Apply operator [U+2061 FUNCTION APPLICATION]
[or ▒ (U+2592 MEDIUM SHADE)]. This is a special binary operator and the operand that follows it is
the function argument. [...] If the Function Apply operator is immediately followed by a
subscript or superscript expression, that expression should be applied to the function
name and the Function Apply operator moved passed [sic] the modified name to bind the
operand that follows as the function argument.”

P T R

P T R

P T R

64 ⁓ Parsing UnicodeMath and Translating it Into MathML

⸻⸻
1 See https://www.cs.bgu.ac.il/~khitron/Equation%20Editor.pdf.

One case where a function conventionally carries a script is in the derivative of the
tangent:

In summary, functions are denoted by

1. a function name (61 common ones are hardcoded in the grammar),
2. an optional function apply operator,
3. an optional postscript that, in the presence of the function apply operator, will be at-

tached to the function name,
4. an optional space (to detach the function from its argument in plain text, but keep

them semantically connected), and
5. the function's argument.

Here are two examples:

sin α ⟶
function:
 f:
 atoms:
 chars: "sin"
 of: αᴾ

⟶
<mrow>
 <mi>sin</mi>
 <mo>⁡</mo>
 αᵀ
</mrow>

⟶

cos▒² α ⟶

function:
 f:
 script:
 type: "subsup"
 base:
 atoms:
 chars: "cos"
 high:
 expr:
 number: "2"
 of: αᴾ

⟶

<mrow>
 <msup>
 <mi>cos</mi>
 <mn>2</mn>
 </msup>
 <mo>⁡</mo>
 αᵀ
</mrow>

⟶

4.14 TEXT
In Section 3.15 of the tech note, Sargent notes that “[s]ometimes one wants ordinary text
inside a function argument or in a math zone as in the formula

[...] For such cases, the alphabetic characters should not be converted to math alphabetic
characters and the typography should be that of ordinary text, not math text. To embed
such text inside functions or in general in a math zone, the text can be enclosed inside

1

P T R

P T R

https://www.cs.bgu.ac.il/~khitron/Equation%20Editor.pdf
https://www.cs.bgu.ac.il/~khitron/Equation%20Editor.pdf

Noah Doersing ⁓ 65

⸻⸻
1 See https://developer.mozilla.org/en-US/docs/Web/MathML/Element/mstyle.

ASCII double quotes. [...] If you want to include a double quote inside such text, insert \".
Another example is To get the “c.c.” as ordinary text, enclose it with
ASCII double quotes.” [Sargent16]

Thusly motivated, text makes it through the pipeline unscathed as shown below.

"α" ⟶ text: α ⟶ <mtext>
 α
</mtext>

⟶ ꭤ

4.15 SIZE OVERRIDES
Newly introduced in version 3 of UnicodeMath, “[t]he inverted F character Ⅎ ([U+2132 TURNED
CAPITAL F]) followed by various ASCII characters changes the 'font' of the text. For example,
a_ℲA2 builds up as in contrast to a_2, which builds up as .” [Sargent16]

Sargent lists four flags: A for increasing the font size by one increment, B for increasing it
by two increments, C for decreasing it by one increment, and D for decreasing it by two
increments.

My initial implementation of this feature worked as shown below – <mstyle>'s scriptlevel
attribute which “[c]ontrols mostly the font-size [and] accepts a non-negative integer, as
well as a '+' or a '-' sign, which increments or decrements the current value”, according to
the MDN web docs.

ℲBα ⟶ sizeoverride:
 size: "B"
 of: αᴾ

⟶
<mstyle scriptlevel="-">
 <mstyle scriptlevel="-">
 αᵀ
 </mstyle>
</mstyle>

⟶

Increasing the script level implies smaller text, so the script level is decreased twice here
to increase the font size by two increments. However, while semantically sensible, it turns
out that this feature is not implemented in any MathML renderer I'm aware of. So instead,
I set <mstyle>'s fontsize attribute to em, with being the number of increments by
which the font size should be increased (negative values result in a decrease by incre-
ments). The constant has been determined empirically. Note that this scaling for-
mula is reused for resizing delimiters (see Section 4.20).

This approach works perfectly in Safari and Firefox, but merely well in MathJax, where it
does not behave in a cumulative fashion, i.e., ℲBℲBα does not yield a larger font than ℲBα.

P T R

1

P T R

https://developer.mozilla.org/en-US/docs/Web/MathML/Element/mstyle
https://developer.mozilla.org/en-US/docs/Web/MathML/Element/mstyle

66 ⁓ Parsing UnicodeMath and Translating it Into MathML

⸻⸻
1 Typewrite-style variants of lowercase and uppercase Latin characters exist in Unicode, but that's it. Meanwhile,
a full typewriter font is available on nearly every system.
2 See https://meyerweb.com/eric/thoughts/2014/06/19/rebeccapurple/ – but go get a box of tissues first.

ℲBα ℲAβ γ ℲCδ ℲDε ⟶

<mrow>
 <mstyle fontsize="1.5625">
 αᵀ
 </mstyle>
 <mstyle fontsize="1.25">
 βᵀ
 </mstyle>
 γᵀ
 <mstyle fontsize="0.8">
 δᵀ
 </mstyle>
 <mstyle fontsize="0.64">
 εᵀ
 </mstyle>
</mrow>

⟶

4.16 NON-STANDARD EXTENSIONS: COLOR,
COMMENTS & TYPEWRITER FONT
In Section 1 of the tech note, Sargent writes that UnicodeMath, as implemented in Mi-
crosoft's products, “delegates some rich-text properties like text and background colors,
[...] comments, [...] etc., to a higher layer.” [Sargent16] Although this works well in the con-
text he envisions, it's impossible when integrating UnicodeMath into Markdeep or HTML
– there simply is no suitable higher layer.

To address this issue, four additional, non-standard constructs were introduced: a method
for setting a subexpression's foreground and background colors, a notation for comments,
and a way of writing text in a typewriter font . None of them are implemented in a partic-
ularly interesting way, so I won't go into as much detail here as I do in other sections.

Text colors are denoted as ✎(color&α) in UnicodeMath code, where color is any color
name or notation legal in CSS – this laissez-faire approach seems to work just fine in Sa-
fari, Firefox and with MathJax. For example, to display the number 6 in rebeccapurple ,
one would write ✎(rebeccapurple&6), which renders as .

Background colors work analogously, except with ☁ (U+2601 CLOUD) in place of U+270E LOWER RIGHT
PENCIL. Text colors and background colors can be combined, of course.

Comments are implemented such that text between ⫷ (U+2AF7 TRIPLE NESTED LESS-THAN) and ⫸
(U+2AF8 TRIPLE NESTED GREATER-THAN) is parsed in much the same way that "text" is, but removed
during the translation step.

Typewriter text, denoted by ￗ(α) (read ￗ as “tt”, even though it's actually U+FFD7 HALFWIDTH

P&T R

1

2

https://meyerweb.com/eric/thoughts/2014/06/19/rebeccapurple/

Noah Doersing ⁓ 67

⸻⸻
1 See https://db.inf.uni-tuebingen.de/staticfiles/teaching/ws1718/DB1/slides/DB1-slides-12.pdf.
2 In Section 4.1 of the tech note, Sargent mentions that “for proper typography, the prime should have a large
glyph variant that when superscripted looks correct” [Sargent16] – I was unable to find such a variant encoded in
Unicode. However, at least Firefox's built-in MathML renderer and MathJax seem to use such a variant in the cor-
rect places.

HANGUL LETTER YU), is rendered in the system's default type writer font. This is accomplished by
wrapping the text in an <mstyle element as follows:

ￗ(α) ⟶ tt: α ⟶
<mstyle fontfamily="monospace">
 <mtext>
 α
 </mtext>
</mstyle>

⟶ ꭤ

Typewriter text is useful when formulating relational algebra queries , for example:

4.17 PRIMES
Primes, similar to scripts, can follow any entity or operator. They can be entered by typing

the ASCII apostrophe ' (U+0027 APOSTROPHE),
′ (U+2032 PRIME),
″ (U+2033 DOUBLE PRIME),
‴ (U+2034 TRIPLE PRIME),
⁗ (U+2057 QUADRUPLE PRIME),

or any combination of the above. During parsing, the primes are counted in a semantic ac-
tion so that during the translation to MathML,

if a single prime is present, U+2032 PRIME is emitted in an <msup> attached to the prime
base (or prepended to a previously-present superscript as described in Section 3.10 of
the tech note: “It's [...] important to merge the prime into a superscript that follows,
e.g., a'^c should display as , where both the prime and the c are in the same super-
script argument.” [Sargent16]);
if two primes were given, U+2033 DOUBLE PRIME is emitted in the same manner;
for three primes, U+2034 TRIPLE PRIME is emitted;
for four primes, U+2057 QUADRUPLE PRIME is emitted; and
for more primes, U+2032 PRIME is repeated the appropriate number of times.

Consider the following two examples.

P T R

1

X A C Y B Z "LEGO"

from to to2 to from2 from2 from to2 to

2

https://db.inf.uni-tuebingen.de/staticfiles/teaching/ws1718/DB1/slides/DB1-slides-12.pdf
https://db.inf.uni-tuebingen.de/staticfiles/teaching/ws1718/DB1/slides/DB1-slides-12.pdf

68 ⁓ Parsing UnicodeMath and Translating it Into MathML

⸻⸻
1 See https://en.wikipedia.org/wiki/Double_factorial.

α'′ ⟶ primed:
 base: αᴾ
 primes: 2

⟶
<msup>
 αᵀ
 <mo>″</mo>
</msup>

⟶

α'₂^β ⟶

script:
 type: "subsup"
 base:
 primed:
 base: αᴾ
 primes: 1
 low:
 expr:
 number: "2"
 high: βᴾ

⟶

<msubsup>
 αᵀ
 <mn>2</mn>
 <mrow>
 <mo>′</mo>
 βᵀ
 </mrow>
</msubsup>

⟶

4.18 FACTORIALS
An entity followed by an exclamation mark is recognized as a factorial. If instead followed
by two exclamation marks ‼ (U+203C DOUBLE EXCLAMATION MARK), it is recognized as a semifactorial ,
which I've implemented as syntactic sugar for two nested factorials:

α! + β‼ ⟶
expr: ⟬
 factorial: αᵀ
 factorial:
 factorial: βᵀ
 ⟭

⟶

<mrow>
 <mrow>
 αᵀ
 <mo>!</mo>
 </mrow>
 <mo>+</mo>
 <mrow>
 <mrow>
 βᵀ
 <mo>!</mo>
 </mrow>
 <mo>!</mo>
 </mrow>
</mrow>

⟶

P T R

P T R

1

P T R

https://en.wikipedia.org/wiki/Double_factorial
https://en.wikipedia.org/wiki/Double_factorial

Noah Doersing ⁓ 69

⸻⸻
1 As noted in a comment within the grammar, this set should include any Unicode character that's in the L∗ cat-
egories: “Lowercase Letter” (Ll, 2151 code points), “Modifier Letter” (Lm, 259 code points), “Other Letter” (Lo,
121414 code points), “Titlecase Letter” (Lt, 31 code points), and “Uppercase Letter” (Lu, 1788 code points). How-
ever, since JavaScript's regex engine does not support matching on Unicode categories – others do, see
https://stackoverflow.com/questions/1832893/python-regex-matching-unicode-properties – this would be diffi-
cult to implement. As a result, I've made the choice to only support Latin and Greek letters for now. See also:
https://stackoverflow.com/questions/280712/javascript-unicode-regexes
2 These characters pass through the UnicodeMathML pipeline unchanged. It would be conceivable to convert
them to their ASCII counterparts and use MathML's mathvariant attribute (see
https://developer.mozilla.org/en-US/docs/Web/MathML/Element/mi#Attributes for more information) to switch
fonts, however this is not supported by all MathML renderers. Anyhow, “[t]he mathvariant attribute was added to
MathML before the Unicode math alphanumerics were encoded in Unicode 3.1.0 (March, 2001). But now it’s only
needed for reading existing documents that contain it.” [Sargent19]
3 Section 4.1 of the tech note: “[i]t is easier to type ASCII letters than italic letters, but when used as mathemat-
ical variables, such letters are traditionally italicized in print. Accordingly a user might want to make italic the
default alphabet in a math context, reserving the right to overrule this default when necessary. A more elegant
approach in math zones is to translate letters deemed to be standalone to the appropriate math alphabetic char-
acters [...].” [Sargent16]
4 Not in the Game of Thrones sense.
5 See https://www.w3.org/TR/MathML2/chapter2.html.

4.19 ATOMS
Atoms were once considered to be the fundamental building blocks of the universe.
(Dis-)Similarly, in UnicodeMath, an atom is

a Latin or Greek letter ,
a character from what I call a “math font” – math fonts consist of 𝙨

𝓋𝓪 𝕟 of Latin and Greek letters as well as numbers, most of which are located in
Unicode's Mathematical Alphanumeric Symbols block,
an emoji,
one or more space characters (see rule mathspaces), or
a diacriticized letter, digit or delimited expression.

A semantic action attached to the atoms rule merges adjacent letters into words – for ex-
ample, parsing abc creates an intermediate list [{"char": "a"}, {"char": "b"}, {"char":
"c"}] which is transformed into {"atoms": {"chars": "abc"}}. Merging stops upon en-
countering a math space or a diacriticized expression, and resumes afterwards – for ex-
ample, parsing abc42 yields {"atoms": [{"chars": "abc"}, {"number": "42"}]}.

During the translation step, stand-alone Latin and Greek letters are converted to italicized
variants from the Mathematical Alphanumeric Symbols block. For example, a is turned into

, but abc remains “unsullied” on the assumption that it represents a word or function
name. If this is not the desired interpretation, the writer may intersperse characters with
U+2061 FUNCTION APPLICATION, U+2062 INVISIBLE TIMES, U+2063 INVISIBLE SEPARATOR or U+2064 INVISIBLE PLUS depending
on indented semantics (these invisible code points are picked up by screen-reading soft-
ware, thus aiding accessibility).

Diacriticized expressions, detailed in Section 3.10 of the tech note, are ones that are

1

2

3

4

5

https://stackoverflow.com/questions/1832893/python-regex-matching-unicode-properties
https://stackoverflow.com/questions/280712/javascript-unicode-regexes
https://developer.mozilla.org/en-US/docs/Web/MathML/Element/mi#Attributes
https://www.w3.org/TR/MathML2/chapter2.html
https://www.w3.org/TR/MathML2/chapter2.html

70 ⁓ Parsing UnicodeMath and Translating it Into MathML

⸻⸻
1 Note that not all diacritics should display above their base – some go below it (which I've implemented with
<munder>), either directly or separated with a small space, other are superimposed over the base. A Unicode Tech-
nical Note outlines a general rendering algorithm for combining marks: https://www.unicode.org/notes/tn2/
2 See https://en.wikipedia.org/wiki/Notation_for_differentiation#Newton's_notation.
3 Analogously to letters, anything from Unicode's “Decimal Number” (Nd, 630 code points) category should be
supported here – my implementation only supports [0-9] for the reason detailed five footnotes ago.
4 See https://en.wikipedia.org/wiki/Notation_for_differentiation#Leibniz's_notation.
5 See https://en.wikipedia.org/wiki/Notation_for_differentiation#Euler's_notation.

succeeded by a character from Unicode's “Combining Diacritical Marks” or “Combining
Diacritical Marks for Symbols” blocks. In plain text, these diacritical marks combine with
their predecessor character into a new character, e.g., an a followed by U+0302 COMBINING CIRCUM-
FLEX ACCENT becomes â. In MathML, this can be replicated by wrapping base and diacritic in an
<mover accent="true"> tag . For example, the Fourier transform

features a diacriticized . Similarly, Newton's notation for differentiation heavily relies
on diacritical dots (which some MathML renderers don't align neatly):

Some diacritics can stretch to fit on top of multiple characters at a time. For example,

(a+b) ̂renders as .

Numbers – optionally with a decimal dot or comma – are related to atoms in that they
can occur in the same contexts, as are some special double-struck letters detailed in Sec-
tion 3.11 of the tech note:

ⅆ encodes the letter “d” as used in Leibniz's differential notation – regarding the ex-
ample below, Sargent notes in Section 3.4 “that the ⅆ character automatically intro-
duces a small space between the and the and by default displays as a math-italic

 when it appears in a math zone.” [Sargent16]

Analogously, ⅅ is used in Euler's differential notation .
ⅇ encodes the natural exponent, i.e., Euler's number – it renders as .
ⅈ and ⅉ encode the imaginary unit, rendering as and .

Note that “[i]n US patent applications these characters should be rendered as ⅆ, ⅅ, ⅇ, ⅈ, ⅉ
as defined, but in regular US technical publications, these quantities can be rendered as
math italic” [Sargent16], which is how I've implemented it. “In European technical publica-
tions, they are sometimes rendered as upright characters. [...] [T]he display routines
should provide the appropriate glyphs and spacings.” [Sargent16] Perhaps it would be useful

1

2

3

4

5

https://www.unicode.org/notes/tn2/
https://en.wikipedia.org/wiki/Notation_for_differentiation#Newton's_notation
https://en.wikipedia.org/wiki/Notation_for_differentiation#Leibniz's_notation
https://en.wikipedia.org/wiki/Notation_for_differentiation#Euler's_notation
https://en.wikipedia.org/wiki/Notation_for_differentiation#Newton's_notation
https://en.wikipedia.org/wiki/Notation_for_differentiation#Leibniz's_notation
https://en.wikipedia.org/wiki/Notation_for_differentiation#Euler's_notation

Noah Doersing ⁓ 71

to let the user configure this in the future (see Section 8.1).

Here's a number of examples demonstrating how atoms, numbers and double-struck sym-
bols are translated into MathML:

abc+a ⟶

expr: ⟬
 atoms:
 chars: "abc"
 operator: "+"
 atoms:
 chars: "a"
 ⟭

⟶
<mrow>
 <mi>abc</mi>
 <mo>+</mo>
 <mi>𝑎</mi>
</mrow>

⟶

30-50🐗 ⟶

expr: ⟬
 number: "30"
 operator: "-"
 ⟬
 number: "50"
 atoms:
 chars: "🐗 "
 ⟭
 ⟭

⟶

<mrow>
 <mn>30</mn>
 <mo>−</mo>
 <mrow>
 <mn>50</mn>
 <mi>🐗 </mi>
 </mrow>
</mrow>

⟶ 🐗

α̇̈ ⟶
atoms: ⟬
 diacriticized:
 base: αᴾ
 diacritics: ⟬" ̈", " ̇"⟭
 ⟭

⟶

<mover accent="true">
 <mover accent="true">
 αᵀ
 <mo>̈</mo>
 </mover>
 <mo>̇</mo>
</mover>

⟶

αⅆβ ⟶
expr: ⟬
 αᴾ
 doublestruck: "ⅆ"
 βᴾ
 ⟭

⟶

<mrow>
 αᵀ
 <mrow>
 <mspace width="thinmathspace" />
 <mi>𝑑</mi>
 </mrow>
 βᵀ
</mrow>

⟶

P T R

P T R

P T R

P T R

72 ⁓ Parsing UnicodeMath and Translating it Into MathML

4.20 DELIMITERS & GROUPING
The missing UnicodeMath construct is, of course, delimiters. I've already mentioned situ-
ations in which parentheses are removed during translation to MathML, but not yet how
they come into being in the first place. The expBracket grammar rule is used to parse

absolute values: expressions delimited by the standard pipe symbol |,
vector norms: expressions delimited by either two pipes or ‖ (U+2016 DOUBLE VERTICAL LINE),
expressions enclosed within an opening bracket and a closing bracket, and
multiple-case expressions.

The first two are notable since the opening and closing delimiters are identical for them,
which makes parsing of nested absolute values or norms tricky or – if nesting makes an
expression ambiguous – impossible. In Section 3.1 of the tech note, Sargent notes that
“[n]ested absolute values can be handled unambiguously by discarding the outermost par-
entheses within an absolute value. For example, the [...] expression can have the
UnicodeMath |(|x|−|y|)| [and] the example needs the clarifying parentheses
since it can be interpreted as either (|a|b)−(c|d|) or |a(|b−c|)d|.” [Sargent16]

Note that under certain circumstances, the pipe symbol can also be used as a normal
opening and closing delimiter. Quoting from Section 3.1 of the tech note, “[t]his handles
the important case of the bra vector in Dirac notation. For example, the quantum
mechanical density operator has the definition

where the vertical bars can be input using the [pipe symbol].” [Sargent16]

Switching gears to the third point above, opening delimiters include

((U+0028 LEFT PARENTHESIS),
[(U+005B LEFT SQUARE BRACKET),
{ (U+007B LEFT CURLY BRACKET),
⟨ (U+27E8 MATHEMATICAL LEFT ANGLE BRACKET),
⌈ (U+2308 LEFT CEILING),
⌊ (U+230A LEFT FLOOR),

and closing delimiters include

) (U+0029 RIGHT PARENTHESIS),
] (U+005D RIGHT SQUARE BRACKET),
} (U+007D RIGHT CURLY BRACKET),
⟩ (U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET),
⌉ (U+2309 RIGHT CEILING), and
⌋ (U+230B RIGHT FLOOR).

Noah Doersing ⁓ 73

⸻⸻
1 See https://developer.mozilla.org/en-US/docs/Web/MathML/Element/mfenced.

These delimiters can be paired arbitrarily and they adjust to the size of their contents
automatically, thanks to MathML's <mfenced> element . As an example, the utterly non-
sensical UnicodeMath expression {a⌋^⟨1/[2)/3] renders as

If a closing delimiter is preceded by ├ (U+251C BOX DRAWINGS LIGHT VERTICAL AND RIGHT), it can be used in
a place where an opening delimiter would be expected. Analogously, an opening delimiter
after ┤ (U+2524 BOX DRAWINGS LIGHT VERTICAL AND LEFT) can close an expression. If placed between one of
these markers and the associated delimiter, a positive integer allows for manual sizing of
the delimiter – this reuses the font size adjustment function introduced in Section 4.15. For
example, ├3(├1((a)┤1)┤3) /= (((a))) is rendered as

Moreover, the special brackets 〖 (U+3016 LEFT WHITE LENTICULAR BRACKET) and 〗 (U+3017 RIGHT WHITE LENTICULAR
BRACKET) become invisible during translation to MathML. If they occur together, a grouping
<mrow> is generated in their place, but each of them can also be paired with a visible delim-
iter. In conjunction with an equation array, this can be used to replicate LaTeX's cases
environment:

The same expression can – with a pinch of syntactic sugar added in UnicodeMath version
3 – be written as |x|=©(&x&"if "x≥0@-&x&"if "x<0) instead of |x|={█(&x&"if "x≥0@-&x&"if
"x<0)〗.

Here's how a few examples of delimited expressions make it though UnicodeMathML:

(α) ⟶
bracketed:
 open: "("
 close: ")"
 content: αᴾ

⟶
<mfenced open="("
 close=")">
 αᵀ
</mfenced>

⟶

1

P T R

https://developer.mozilla.org/en-US/docs/Web/MathML/Element/mfenced
https://developer.mozilla.org/en-US/docs/Web/MathML/Element/mfenced

74 ⁓ Parsing UnicodeMath and Translating it Into MathML

├1]α, β┤1) ⟶

bracketed:
 open:
 bracket: "]"
 size: 1
 close:
 bracket: ")"
 size: 1
 content:
 expr: ⟬
 αᴾ
 operator: ","
 βᴾ
 ⟭

⟶

<mrow>
 <mo minsize="1.25em"
 maxsize="1.25em">]</mo>
 <mrow>
 αᵀ
 <mo>,</mo>
 βᵀ
 </mrow>
 <mo minsize="1.25em"
 maxsize="1.25em">)</mo>
</mrow>

⟶

(α) ⟶

bracketed:
 open: "{"
 close:
 content:
 array:
 arows: ⟬
 arow: ⟬αᴾ⟭
 arow: ⟬βᴾ⟭
 ⟭

⟶

<mfenced open="{"
 close="">
 <mtable>
 <mtr>
 <mtd>
 αᴾ
 </mtd>
 </mtr>
 <mtr>
 <mtd>
 βᴾ
 </mtd>
 </mtr>
 </mtable>
 </mfenced>

⟶

Note that “delimiters can also have separators within them” [Sargent16], which are dis-
cussed in Section 3.1 of the tech note and match up with the <mfenced separator=""> at-
tribute: UnicodeMathML supports │ (U+2502 BOX DRAWINGS LIGHT VERTICAL) for expressions like

 and ∣ (U+2223 DIVIDES) for expressions like . Also, other operators can be
treated as separators by preceding them with ║ (U+2551 BOX DRAWINGS DOUBLE VERTICAL), which I
haven't implemented because it would 1. complicate parsing of operators, 2. make no
visual difference and due to 3. the <mfenced> element' recent (see Section 8.1) deprecation.

P T R

P T R

Noah Doersing ⁓ 75

⸻⸻
1 Obtainable from https://casual-effects.com/markdeep/1.06/markdeep.js and additionally kept at
☁/code/markdeep-integration/markdeep-1.06-orig.js.

5
INTEGRATION INTO
MARKDEEP AND HTML
Note: At the time of writing, Markdeep 1.06 was the most recent release. Any diffs below are
with respect to that version. However, I do not expect the integration approaches described
below to require more-than-superficial changes in any future versions of Markdeep.

The tech note includes a section on recognizing mathematical expressions based on heur-
istics such as the presence of math symbols. “The basic idea is that math characters
identify themselves as such and potentially identify their surrounding characters as math
characters as well.” [Sargent16] Some of these heuristics seem a bit dubious: “Specifically
ASCII letter pairs surrounded by whitespace are often mathematical expressions, and as
such should be italicized in print. If a letter pair fails to appear in a list of common English
and European two-letter words, it is treated as a mathematical expression and italicized.”
[Sargent16]

I, however, expect that from the perspective of a user who is not familiar with these spe-
cific heuristics, such behavior would likely appear inscrutable at best and infuriating at
worst – perhaps it's acceptable in a WYSIWYG environment, but surely not in a context
where UnicodeMath expressions are included in a plain-text document and converted into
a built-up form only when the document itself is rendered.

1

https://casual-effects.com/markdeep/1.06/markdeep.js

76 ⁓ Integration into Markdeep and HTML

Luckily, the tech note also defines opening and closing delimiters for UnicodeMath: “Note
that if explicit math-zone-on and math-zone-off characters are desired, [...] ⁅ ([U+2045 LEFT
SQUARE BRACKET WITH QUILL]) starts a math zone and ⁆ ([U+2046 RIGHT SQUARE BRACKET WITH QUILL]) ends it.”
[Sargent16]

I've opted to implement math zone extraction purely based on these delimiters instead of
heuristically.

5.1 NAÏVE MARKDEEP INTEGRATION
A quick-and-dirty way to integrate UnicodeMathML into Markdeep is to

1. generate a standalone version of the parser by opening ☁ /code/utils/generate-
parser.html in any browser, upon which a file unicodemathml-parser.js will show up
wherever that browser stores downloads, and include this file in a Markdeep docu-
ment using a <script> tag ahead of the Markdeep loading code,

2. load ☁/code/src/unicodemathml.js in the same manner, and
3. apply the following patch to Markdeep, yielding ☁ /code/markdeep-

integration/markdeep-1.06-basic.js:

@@ -2529,6 +2529,13 @@
 // Protect raw HTML attributes from processing
 str = str.rp(/(<\w[^ \n<>]*?[\t]+)(.*?)(?=\/?>)/g, protectorWithPrefix);

+ // Convert UnicodeMath expressions to MathML
+ if (typeof unicodemathml ��� "function") {
+ str = str.rp(/⁅([^⁆]*?)⁆/gi, function (unicodemathWithDelimiters, unicodemath) {
+ return protect(unicodemathml(unicodemath).mathml);
+ });
+ }
+
 // End of processing literal blocks
 ///

The location of the inserted code is no accident. Preceding the UnicodeMathML conver-
sion, HTML tags such as <style>, <code>, <svg>, and their contents are protected from fur-
ther processing. This means, for example, that UnicodeMath expressions enclosed in
<code> will not be processed. A similar step is required for <math> tags generated by Uni-
codeMathML: Markdeep's protect function excludes its argument string from further pro-
cessing by Markdeep, preventing issues when math expressions happen to contain valid
Markdown code.

This approach has several advantages, most notably its simplicity:

It is minimally invasive with respect to Markdeep and requires no extra code apart
from two <script> tags.
Because Markdeep's MathJax configuration enables MathML display, this yields the
desired result even in browsers that don't natively support MathML.
With regard to measured performance, it is about as fast as any integration can

Noah Doersing ⁓ 77

⸻⸻
1 Quoting from MathJax's documentation: “The support for TeX and LaTeX in MathJax involves two functions:
the first looks for mathematics within your web page (indicated by math delimiters like $$...$$) and marks the
mathematics for later processing by MathJax, and the second is what converts the TeX notation into MathJax’s
internal format, where one of MathJax’s output processors then displays it in the web page.” See
http://docs.mathjax.org/en/latest/input/tex/index.html.

possibly be (since neither DOM manipulation nor any other expensive overhead is
involved).

However, there is one deal-breaking disadvantage, along with a few comparatively minor
nicks:

Perceived performance is severely lacking. This is because UnicodeMathML bars Mark-
deep from proceeding while the translation is in progress, i.e., the user will be faced
with a blank page until the translation of all UnicodeMath expressions (and the rest
of Markdeep's processing) is finished. Although this is barely noticeable for small doc-
uments, larger documents may remain in this state for several seconds, which, apart
from being inconvenient, may be somewhat disconcerting for the user.
UnicodeMath expressions are translated before Markdown is converted to HTML, so it
is not straightforwardly possible to determine whether to present an expression in
displaystyle or textstyle (recall Section 3.20 of the tech note, which specifies that
“if a math zone fills a (hard or soft) paragraph, the math zone is a display math zone
[and] [i]f any part of the paragraph isn't in a math zone [...], then the math zone is an
inline math zone, which has more compact rendering.” [Sargent16]).
The translation is pure, so UnicodeMath expressions that occur times in a docu-
ment only need to be translated once: the use of a cache would enable this.
Some minor points and edge cases are not addressed, notably escaping of Unicode-
Math delimiters (Section 3.20 of the tech note, for example, \⁅a+b⁆ should be dis-
played as \⁅a+b⁆, not \).

5.2 BETTER MARKDEEP INTEGRATION
For these reasons, the final integration of UnicodeMathML into Markdeep is a two-step
process composed of marking UnicodeMath zones while Markdeep processes the docu-
ment and then, once the page has loaded, translating and rendering whatever has been
marked. I will now discuss this approach, which is implemented in ☁/code/markdeep-
integration/unicodemathml-integration.js and requires a patched variant of Markdeep,
see ☁/code/markdeep-integration/markdeep-1.06.js (or below). Note that MathJax and
other JavaScript-based math renderers function similarly.

The marking step – implemented by the markUnicodemathInHtmlCode function – is mainly
required to protect math zones from Markdeep processing, with the secondary benefit of
making them easy to track down in the second step.

Compared to the naïve integration, a more complex regular expression is used to extract
UnicodeMath zones from the document. Since Markdeep appears to convert every occur-
rence of U+00A0 NO-BREAK SPACE into a character entity , this mapping is reversed in order

1

http://docs.mathjax.org/en/latest/input/tex/index.html

78 ⁓ Integration into Markdeep and HTML

⸻⸻
1 Note that this substitution is responsible for most of the overhead compared to the naïve integration – re-
peated DOM manipulations are simply slower than string operations. I considered batching the DOM manipula-
tions with the goal of reducing the frequency at which browsers need to recalculate the page layout and paint
any changes (which, in Chrome, accounts for up to 30% of the load time), but ultimately decided against this for
simplicity's sake – for now, anyway (see Section 8.3).
2 Although it sounds trivial, regularly updating the progress meter was a bit tricky to figure out – browsers avoid
redrawing content while a JavaScript function is running, forcing me to use JavaScript's async/await mechanism
to effectively CPS transform the renderMarkedUnicodemath function such that a tail call to requestAnimationFrame
is performed after translation of each expression.

to avoid issues when parsing UnicodeMath expressions containing non-breaking spaces.
Then, a element is created as follows:

⁅α⁆ ⟶
<span class="unicodemathml-placeholder"
 data-attr="encodeURIComponent(α)">
 ⁅α⁆

The data-unicodemath attribute is required 1. to avoid having to remove the UnicodeMath
delimiters in the following step, and 2. to circumvent an implementation-specific encod-
ing issue.

The second translating and rendering step – implemented by the
renderMarkedUnicodemath function – is executed immediately prior to execution of Mark-
deep's onLoad hook. After

initializing an on-screen progress meter,
setting up a cache (used to avoid translating identical UnicodeMath expressions more
than once) and
defining CSS rules for parse errors (to color any such expression red and hide the
likely-verbose error message unless the user hovers over the expression – as an ex-
ample, the fraction ⁅a/⁆ is missing its denominator),

it iterates through all DOM elements matching the span.unicodemathml-placeholder se-
lector, performing the following actions for each:

1. The UnicodeMath expression stored in the data-unicodemath attribute is decoded us-
ing decodeURIComponent.

2. A look at sibling nodes and the parent nodes determines whether to present the ex-
pression in displaystyle or textstyle.

3. If present in the cache, a previous translation of the expression is inserted into the
DOM in place of the element. Otherwise, the expression is translated from
scratch via a call of unicodemathml, cached, and substituted as above.

4. The progress meter is updated.

Once every expression has been handled in this way, the progress meter is hidden and
MathJax renders the new MathML elements.

1

2

Noah Doersing ⁓ 79

⸻⸻
1 If such a document were made available on the web, concatenating the four JavaScript files would be advisable
in order to reduce the number of HTTP requests. Locally, especially during development of UnicodeMathML, it's
more convenient to keep them separate, though.

This two-step approach does not substantially increase the degree to which Markdeep
needs to be patched. In surgical terms, three small incisions suffice:

@@ -2529,6 +2529,11 @@
 // Protect raw HTML attributes from processing
 str = str.rp(/(<\w[^ \n<>]*?[\t]+)(.*?)(?=\/?>)/g, protectorWithPrefix);

+ // Mark UnicodeMath expressions for later conversion to MathML
+ if (typeof umml ��� "undefined" && umml) {
+ str = markUnicodemathInHtmlCode(str, protect);
+ }
+
 // End of processing literal blocks
 ///

@@ -4520,9 +4525,10 @@
 }

 function needsMathJax(html) {
- // Need MathJax if $$... $$, \(... \), or \begin{
+ // Need MathJax if UnicodeMath to MathML translator present, $$... $$, \(... \), or \begin{
 return option('detectMath') &&
- ((html.search(/(?:\$\$[\s\S]+\$\$)|(?:\\begin{)/m) ��� -1) ||
+ ((typeof umml ��� "undefined" && umml) ||
+ (html.search(/(?:\$\$[\s\S]+\$\$)|(?:\\begin{)/m) ��� -1) ||
 (html.search(/\\\(.*\\\)/) ��� -1));
 }

@@ -4657,6 +4663,11 @@

 document.body.style.visibility = 'visible';

+ // Kick off UnicodeMath to MathML translation asynchronously
+ if (typeof umml ��� "undefined" && umml) {
+ setTimeout(renderMarkedUnicodemath, 0);
+ }
+
 var hashIndex = window.location.href.indexOf('#');
 if (hashIndex > -1) {
 // Scroll to the target; needed when loading is too fast (ironically)

Note that the boolean variable umml is set iff the integration itself is present, and true iff
both the parser and the translation function are present as well.

The user's .md.html document, then, needs to be structured as shown below. The
unicodemathmlOptions variable is used to configure some aspects of the UnicodeMathML
integration – it can, however, be omitted if the default values, shown here, are desired.

<meta charset="utf-8">

Document content and ⁅m+a⁄t_h⁆ goes here.

1

80 ⁓ Integration into Markdeep and HTML

⸻⸻
1 A different node can be passed to this function. This is handy if, for example, the document has been modified
via AJAX and there's new UnicodeMath in need of being rendered.
2 Save for nodes corresponding the the HTML tags <pre>, <code>, <textarea>, <script>, <style>, <head>, and
<title> – the contents of these nodes examined further for obvious reasons.
3 If browsers other than Firefox and Safari need to be supported, a MathML renderer such as MathJax must be
loaded as well – if present, MathJax is automatically invoked once UnicodeMathML is done.

<script>
 var unicodemathmlOptions = {
 resolveControlWords: false, // resolve control words, e.g., convert \int to ∫?
 showProgress: true, // show progress meter in the bottom right corner?
 before: Function.prototype, // hook executed prior to translation (no-op function)
 after: Function.prototype // hook executed after translation
 };
</script>
<script src="unicodemathml.js"></script>
<script src="unicodemathml-parser.js"></script>
<script src="unicodemathml-integration.js"></script>
<script src="markdeep-1.06.js"></script> <��� patched Markdeep ��>

5.3 HTML INTEGRATION
The main difference between the Markdeep and HTML integrations lies in the input:
Markdeep provides the document as a string, so a regular expression can do the heavy lift-
ing during the marking step. HTML documents, once loaded by a browser far enough for
JavaScript code to be executed, instead exist in the form of a DOM tree.

The marking step of the HTML integration, which is implemented by the
markUnicodemathInHtmlDom function of ☁ /code/markdeep-integration/unicodemathml-
integration.js, thus walks the DOM starting at the document.body node . If it encounters a
non-text node , the function recursively processes the child nodes until it encounters a
text node. Text nodes are split into UnicodeMath zones, which are replaced with a place-
holder in the manner explained in the previous section, and text nodes.

This approach enables full reuse of the translating and rendering step originally written
with the Markdeep integration in mind.

Since Markdeep is not present and thus cannot do it for them, the user needs to jumpstart
the marking and translation process via a call to the renderUnicodemath function, which
simply calls markUnicodemathInHtmlDom and renderMarkedUnicodemath in succession. In a
nutshell, the user's .html document needs to include the following lines:

<script>
 var unicodemathmlOptions = …;
</script>
<script src="../src/unicodemathml.js"></script>
<script src="unicodemathml-parser.js"></script>
<script src="unicodemathml-integration.js"></script>
<script>
 document.body.onload = renderUnicodemath();
</script>

1

2

3

Noah Doersing ⁓ 81

⸻⸻
1 See https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy.
2 For good reason – were this not the case, any HTML document served from the local file system could employ a
snippet of JavaScript code to sneakily send arbitrary files to a remote server.

6
ANCILLARY WORK
In this section, I will first describe the functionality and implementation of the Unicode-
MathML playground, a web app that was very helpful in developing and testing
UnicodeMathML.

I will then briefly share notes on some Markdeep-adjacent tools that were built during the
thesis period. While not central to the UnicodeMathML conversion, they enable the cre-
ation of this thesis document and the slide deck I will use during the thesis defense.

Finally, I will give quick explanations of various Unicode-related data transformation
scripts written while implementing UnicodeMathML.

6.1 UNICODEMATHML PLAYGROUND
Originally indented as a parser development aid, the playground allows writing of Uni-
codeMath expressions with instant preview, character info, control word substitution,
math font selection and other features. Its interface is shown in Figure 5 on the next page.

The playground can be found at ☁/code/playground/. You might be able to try it out by
opening the contained index.html file in their browser – however, most browsers' imple-
mentation of a same-origin policy prevents this. If a Python interpreter is available,1 2

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

82 ⁓ Ancillary Work

navigating to ☁/code/ in a terminal session, running python -m SimpleHTTPServer 8000
and pointing the browser to localhost:8000 should do the trick.

Figure 5: A typical session in the UnicodeMath playground.

file:///Users/noah/Dropbox/uni/Masterarbeit/unicodemathml/thesis/playground.png

Noah Doersing ⁓ 83

⸻⸻
1 This splitting can be disabled in the options pane, which opens when hovering over the gear icon in the top
right corner of the page.
2 See http://www.gust.org.pl/projects/e-foundry/lm-math/.
3 Another item of the options pane enables display of a parse trace. This feature is not enabled by default as it
slows things down considerably.

6.1.1 INTERFACE

In the top left, a <textarea> accepts UnicodeMath expressions. After each key stroke, this
input is split on newlines into multiple separately parsed and translated expressions . Be-
low the input area, the Unicode code points corresponding to the entered characters are
displayed, with whitespace characters highlighted to alert the user if, for example, unin-
tended zero-width spaces are present. This code point view in truncated by default but ex-
pands on hover. Hovering over a specific code point produces a tooltip with additional
information.

The translated MathML code is inserted into an element on the right side of the page and
– in browsers that don't natively support MathML – rendered by MathJax. Figure 5 show-
cases Safari 13's native MathML support, with math text set in a variant of Donald
Knuth's Computer Modern font.

Under this results view, a tabbed interface allows access to syntax-highlighted versions of
the intermediate data structures – the PEG.js AST generated during the parsing step, the
PP AST that emerges after preprocessing, and the MathML AST resulting from the main
translation step. Finally, the MathML source is shown in a separate tab.

The time measurement displayed in each tab represents the total time taken by the step
that generated the data structure shown in that tab. Hovering over these measurements
reveals expression-level timing data.

Below the two-column view, a sort of on-screen keyboard is visible. Clicking on one of its
“keys” inserts the respective character into the input field at the current cursor position.
A horizontally scrollable history of characters inserted in this manner is shown in the top
row for convenience. The second row contains characters with special meaning in Uni-
codeMath – you will surely recognize most of them by now. The following rows feature
various other frequently used characters, including the Greek alphabet. Hovering over
many of the “keys” pops up a tooltip with a short explanation.

The “Codepoint” text field allows the user to enter a Unicode character's hexadecimal rep-
resentation, a click on the adjacent "➥" button inserts this character into the input field.

The “Control word” text field functions similarly, accepting the control words defined in
Section 4.6 and Appendix B of the tech note, among others – with or without a leading
backslash.

1

2

3

http://www.gust.org.pl/projects/e-foundry/lm-math/
http://www.gust.org.pl/projects/e-foundry/lm-math/

84 ⁓ Ancillary Work

⸻⸻
1 More precisely, these “fonts” are subsets of the Mathematical Alphanumeric Symbols block. See
https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols#Tables_of_styled_letters_and_digits for a
character table, along with a history of documents relating to this block – it turns out that a certain Murray Sar-
gent has authored a number of them.
2 See https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage.
3 See https://highlightjs.org/.
4 See https://jquery.com/.

The “Math fonts” text field and the buttons next to it are a feature I'm rather proud of:
Upon entering a character, the buttons signifying a “font” that the specific character is
not available in are grayed out. If the text field is empty but text is selected in the main
input field, a click on one of the button converts as many characters as possible accord-
ingly, leaving the rest unchanged.

Finally, a number of examples is shown at the bottom of the page. They are clickable in
the same manner as the “keys” further up.

Hovering over the gear icon in the top right corner reveals an options pane. Here, the user
can enable and disable a number of features, such as

whether control words such as \alpha should be replaced with the respective charac-
ter before parsing,
whether to present the results in displaystyle mode (as opposed to textstyle mode),
whether the parser should cache intermediate results (discussed in Section 2.7.1.2 and
Section 7.1.5),
whether a debug mode with additional console.log output should be enabled, and
whether to output LaTeX instead of MathML (which is still experimental at this time
– see Section 8.1).

Note that the playground keeps a copy of its state (encompassing input, active tab, history
and selected options) in local storage . Apart from guarding against data loss in the event
of a crash, this allows the user to simply reload the page after making changes to any steps
of the UnicodeMathML pipeline to see these changes reflected in the output.

6.1.2 IMPLEMENTATION

Some itemized notes on the playground's implementation:

The UnicodeMath parser is generated by PEG.js from the grammar on-demand at load
time – any errors are shown to the user. A detailed error object is console.logged.
Syntax highlighting of JSON objects and MathML code is based on code snippets
found on the Stack Overflow and W3Schools – embedding a library like highlight.js
seemed like overkill.
The JavaScript library jQuery is used in some places, mainly to simplify event
handling.
Whether a browser supports MathML is based on the browser's user agent. It's con-
ceivable to determine this experimentally, for example by introducing a hidden

1

2

3

4

https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols#Tables_of_styled_letters_and_digits
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://highlightjs.org/
https://jquery.com/
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://highlightjs.org/
https://jquery.com/

Noah Doersing ⁓ 85

⸻⸻
1 See https://tex.stackexchange.com/questions/2099/how-to-include-svg-diagrams-in-latex.

<math> element containing a simple fraction and checking the element's aspect ratio:
in a MathML-capable browser, the element would be taller than it is wide, in other
browsers, vice versa. This level of future-proofing for browser feature evolution
seemed unnecessary, though.
The width of the “keys” for inputting the various math spaces needed to be set manu-
ally – the actual widths of the spaces depend on the font and are by no means con-
sistent with their definitions (neither are they internally consistent within a given
font).
The draw function, called upon to re-translate and draw the input after each key
stroke, splits the input into separate expressions on newlines. In an previous version
of the playground, it would iterate through these expressions and integrate the trans-
lation results into the DOM – i.e., the append the new MathML code to the output
area and update each tab's content in the same manner - after translating each ex-
pression. This turned out to be a performance bottleneck when operating on tens of
expressions at a time, which I addressed by collecting the new data in temporary vari-
ables and inserting these into the DOM after all UnicodeMath expressions have been
translated.
The playground does not implement the sort of caching used within the Markdeep
and HTML integration – this is owed to its use as a development tool, where caching
might lead to confusion.

6.2 MARKDEEP-BASED TOOLS AND APPLICATIONS

6.2.1 MARKDEEP-THESIS

As the work on parsing and transforming UnicodeMath to MathML came to a close, the
task of writing about it began to emerge from the understory.

Faced with the need of showing both UnicodeMath source code and the parsed, trans-
formed, and – most importantly – rendered result, there were three options:

1. Write the thesis in LaTeX and manually rewrite any translation results in LaTeX for
rendering.

2. Write the thesis in LaTeX, but use its --shell-escape machinery to call a script of
some sort which would spin up a Node.js server that would 1. apply the UnicodeMath
to MathML transformation to a given UnicodeMath expression and 2. render the
MathML code using MathJax, yielding an SVG file. The script would then rely on the
command-line version of Inkscape or a similar tool to convert the SVG file into a
format (ideally PDF) that could then be inserted into a LaTeX document.

3. Write my own browser-based document typesetting tool.

I felt that choosing option 1 would be somewhat dishonest, and option 2 seemed both
more prone to breakage and less interesting (and certainly less reusable) than option 3.

1

https://tex.stackexchange.com/questions/2099/how-to-include-svg-diagrams-in-latex
https://tex.stackexchange.com/questions/2099/how-to-include-svg-diagrams-in-latex

86 ⁓ Ancillary Work

⸻⸻
1 See https://evanbrooks.info/bindery/.
2 In fact, only Google Chrome respects the page size set using the CSS @page selector. Surprisingly, the resulting
PDF misses some fonts or has incorrectly sized text when summoning the print dialog using a keyboard shortcut
– things seem to only reliably look right when opening the dialog via the File menu.
3 See https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Lists_and_Counters/Using_CSS_counters.
4 Note that the dots guiding the reader's gaze from section title to page number in the table of contents of this
thesis are created using W3C-approved CSS magic: https://www.w3.org/Style/Examples/007/leaders.en.html
5 Although in this instance, it's somewhat alleviated by browsers' equally non-excellent hyphenation support,
see https://developer.mozilla.org/en-US/docs/Web/CSS/hyphens.

As the name suggests, the tool I came up with is based on Markdeep, which takes care of
the Markdown to HTML conversion and kicks off the UnicodeMath to MathML transform-
ation. Then, a custom style sheet is applied to make the document look like a thesis. Fi-
nally, the JavaScript library Bindery takes over and splits the web page generated by
Markdeep into several printable pages. The resulting document can be saved as a PDF file
via the browser's print dialog.

It wasn't all smooth sailing, however:

1. Markdeep makes extensive use of CSS counters for section numbering and code list-
ing line numbering. These counters occasionally reset as Bindery subdivides the doc-
ument into pages, which is addressed in a Markdeep-postprocessing step where each
instance where the value of a CSS counter is accessed is replaced with a snapshot of
the counter's value at the time.

2. Markdeep supports endnotes, not footnotes. Although this is not a bug per se, foot-
notes are more convenient for the reader. Thus, in another Markdeep-postprocessing
step, the text associated with every endnote is temporarily stored in the superscripted
reference to it. Then, as Bindery processed the document, a Bindery.PageReference
hook converts these stored endnote contents to footnotes on the respective pages.

3. Bindery can parse a table of contents and insert the page number of each entry. How-
ever, the table of contents generated by Markdeep is not formatted in a way that is
conducive to this task, so a third postprocessing step is required to transform it ac-
cordingly.

4. The MathJax version integrated into Markdeep is not configured for optimal print
quality, so a differently-configured MathJax variant is loaded after Markdeep postpro-
cessing and before Bindery is invoked.

5. Finally, the order of operations – Markdeep, postprocessing, MathJax, Bindery – was
a bit tricky to get right on page load since there is no standard way for each of these
libraries to signal that they're done processing the document.

Note that although I finished markdeep-thesis (save for minor improvements) before im-
plementing the final variant of UnicodeMathML's Markdeep integration and commencing
work on this thesis, replacing stock Markdeep with my patched version and including the
integration itself went without a hitch.

Another note I'd like to leave is that browsers don't excel at rendering justified text, as you
may have noticed reading this document – their rendering algorithms appear to be

1

2

3

4

5

https://evanbrooks.info/bindery/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Lists_and_Counters/Using_CSS_counters
https://www.w3.org/Style/Examples/007/leaders.en.html
https://developer.mozilla.org/en-US/docs/Web/CSS/hyphens
https://evanbrooks.info/bindery/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Lists_and_Counters/Using_CSS_counters

Noah Doersing ⁓ 87

⸻⸻
1 See https://github.com/bramstein/typeset.
2 See https://bugzilla.mozilla.org/show_bug.cgi?id=630181.
3 It will be publicly available at https://github.com/doersino/markdeep-thesis – or, if you're living in the future,
it might already be up.
4 See https://casual-effects.com/markdeep/slides.md.html.
5 See https://developer.mozilla.org/en-US/docs/Web/CSS/zoom.

optimized for speed above all else. While there exists an open-source implementation of
the Knuth and Plass line breaking algorithm [Knuth81], and a related issue has been open
in Firefox's bug tracker for nine years, there is no “production-ready” way of using a better
line breaking algorithm.

Despite the issues mentioned above, markdeep-thesis has performed well in typesetting
this thesis document (about 20 seconds elapse between opening it in a browser and it fin-
ishing rendering, which is roughly on par with LaTeX for a document of this size and com-
plexity). My aim is to release it as free software shortly after submission of this thesis.

6.2.2 MARKDEEP-SLIDES

Having built several slide decks for seminar and thesis presentations at university – ini-
tially with LaTeX and the Beamer package, then with the Markdown-based, but propriet-
ary Mac app Deckset, and finally with a modified version of a Markdeep-powered slide
template – I realized that it wouldn't take a great deal of effort to build a Markdeep-
powered presenation tool.

Built before markdeep-thesis, markdeep-slides utilizes some of the same postprocessing
concepts to split a Markdeep document into slides. Depending on the the user's prefer-
ence, slide breaks are either inserted before headings or they replace horizontal rules, ex-
pressed in Markdeep as ---. Display of presenter notes is supported as well – in Markdeep
source code, they need to be wrapped in triply nested block quotes, i.e., preceded by �>�.

A keyboard shortcut allows the user to switch between two modes:

Draft mode, where all slides are shown in a scrolling view, with presenter notes below
each slide. This mode is intended to be used during the making of slides.
Presentation mode, where a single slide fills the screen and standard shortcuts switch
between them. The presenter notes, along with a timer, are shown in a separate win-
dow visible to the presenter.

A PDF version of the slides can be generated in the same manner as it can for markdeep-
thesis. Three pre-built themes are available. The author of the slides can set aspect ratio,
theme, font size and other settings in their Markdeep source code.

The central problem that needed solving here was the scaling of slides to arbitrary screen
sizes. Instead of relying on CSS transforms (which may not work reliably when including
videos or making slides interactive with JavaScript) or the non-standard zoom CSS
property , the size of all elements visible during a presentation is specified in rem or em
units.

1

2

3

4

5

https://github.com/bramstein/typeset
https://bugzilla.mozilla.org/show_bug.cgi?id=630181
https://github.com/doersino/markdeep-thesis
https://casual-effects.com/markdeep/slides.md.html
https://developer.mozilla.org/en-US/docs/Web/CSS/zoom
https://github.com/bramstein/typeset
https://bugzilla.mozilla.org/show_bug.cgi?id=630181
https://casual-effects.com/markdeep/slides.md.html
https://developer.mozilla.org/en-US/docs/Web/CSS/zoom

88 ⁓ Ancillary Work

⸻⸻
1 Barring browser bugs, of course: https://github.com/doersino/markdeep-slides#known-issues

These units are relative to the root elements font size, which I specify in vw or wh units
(depending on how the configured slide aspect ratio compares to the viewport's size) –
meaning that all elements of the page scale properly when the window size changes.

My thesis defense will utilize a slide deck built with markdeep-slides. (I plan on augment-
ing it by integrating a miniature version of the UnicodeMathML playground for interactive
demonstrations.)

6.2.3 MARKDEEP-DIAGRAM-DRAFTING-BOARD

Markdeep diagrams are designed to be readable in plain text form, but sometimes it's still
nice to have a preview. Due to this plaintext readability constraint, rendered diagrams can
be superimposed over their source code and instantly updated as the user modifies the
source. Guided by this insight (and in a fit of procrastination), I implemented this behavi-
or in a small tool, available at https://github.com/doersino/markdeep-diagram-drafting-
board and shown in Figure 6

Figure 6: markdeep-diagram-drafting-board in action.

1

https://github.com/doersino/markdeep-slides#known-issues
https://github.com/doersino/markdeep-diagram-drafting-board
file:///Users/noah/Dropbox/uni/Masterarbeit/unicodemathml/thesis/mddb.png

Noah Doersing ⁓ 89

6.3 PYTHON SCRIPTS
The following Python 3 scripts are located in ☁/code/utils/.

Given a newline-separated list of characters (either from a file or via standard input),
characters-to-codepoints.py outputs the corresponding Unicode code points. The in-
verse function is implemented by codepoints-to-characters.py. The two scripts are
actually isomorphic, i.e., python3 codepoints-to-characters.py foo.txt | python3
characters-to-codepoints.py (and vice versa) is a rather inefficient way of running cat
foo.txt.
Given two files from https://www.unicode.org/Public/12.1.0/ucd/ – a publicly avail-
able dump of the Unicode Character Database [Whistler19] – charinfo.py generates a
piece of JavaScript code that is used within the UnicodeMathML playground to
provide information on Unicode characters. Stored as
☁ /code/playground/charinfo.js, it provides a mapping from code point to name,
block, and category. (In addition, it's responsible for enabling a special code point
notation in this thesis, e.g., turning ___U+1F52D___ into U+1F52D TELESCOPE during
typesetting.)
Finally, emoji.py parses https://unicode.org/Public/emoji/12.0/emoji-data.txt and
outputs a list of code point ranges that aim to identify all emoji, as well as a mapping
of astral plane emoji into the BMP's Private Use Area – the emoji parse rule in
☁/code/src/unicodemathml.pegjs is directly based on this script's output. This is fur-
ther discussed in Section 7.1.2.

https://www.unicode.org/Public/12.1.0/ucd/

90 ⁓ Ancillary Work

Noah Doersing ⁓ 91

7
EVALUATION
The focus of this chapter is divided among two points: First, I will discuss aspects of the
work that were challenging to me (or just plain challenging – you will be the judge of that,
I suppose) for a variety of reasons. Also, I will swiftly take a look at how UnicodeMathML –
viewed in isolation, as well as its integration into Markdeep – performs and why it per-
forms this way.

7.1 CHALLENGES

7.1.1 PARSER GENERATORS

In Section Section 2.7.2, I've already mentioned that I switched parser generators twice: From
PEG.js to ANTLR and back again (the second switch was made easier as my ANTLR branch
was just about at the same level as the PEG.js at that time). This happened around a third
of the way through the project.

The switch from PEG.js to ANTLR was prompted by my realizing that PEG.js does not
handle astral plane characters properly. This is not an “unforced error” – PEG.js simply
inherits the limitations inherent to JavaScript's UTF-16 string encoding (refer to Section 2.4
for a primer) where astral characters are specified in the form of surrogate pairs.

This would not be a deal-breaking issue if only specific operators, e.g., one of the fraction
slashes, were astral-plane characters (they are specified as strings in the grammar). How-
ever, when it comes to ranges of characters – such as the Mathematical Alphanumeric

92 ⁓ Evaluation

⸻⸻
1 See https://github.com/antlr/antlr4/blob/master/doc/javascript-target.md.
2 See https://github.com/antlr/antlr4/blob/master/doc/unicode.md.

Symbols block – that need to be matched using PEG.js's regular-expression-like syntax,
things become tricky.

For example, a range specified as [𝒜-𝒵], i.e., the range from U+1D49C MATHEMATICAL SCRIPT CAPITAL A
to U+1D4B5 MATHEMATICAL SCRIPT CAPITAL Z – which, by the way, cannot be written as [\u1D49C-
\u1D4B5] since PEG.js's own grammar doesn't allow this – is interpreted by PEG.js as
[\uD835\uDC9C-\uD835\uDCB5], i.e., either U+D835, the nonsensical range from U+DC9C to U+D835,
or U+DCB5. While it is technically possible to instead specify this range as a list of alternat-
ives (like "𝒜" / "ℬ" / … / "𝒵") and have PEG.js parse it correctly, this would result in
dreadful parsing performance (the reasons for which I will discuss in Section 7.1.5).

After trialling a number of other JavaScript-emitting parser generators (which all replic-
ated PEG.js's shortcomings in this area), I came across ANTLR. A basic overview that ex-
plains its upsides (including the option of targeting other languages, not just JavaScript,
in the future) is given in Section 2.7.2.

Once I had verified that its JavaScript target deals with astral plane ranges correctly , I
transformed my PEG.js-based UnicodeMath grammar into ANTLR's format. This was non-
trivial because ANTLR requires a separate lexing stange to be run prior to parsing. Fur-
thermore, I was unable to use semantic actions to build up a custom AST during parsing –
instead I had the options of

1. dealing with ANTLR's automatically generated parse tree during the translation stage
or

2. transforming it into a form resembling the AST generated by PEG.js's semantic action
before the actual translation to MathML.

I went with option 2 in order to keep the central translation function interchangeable
between the two different parsing infrastructures. This, combined with the lexer require-
ment and the generally higher toolchain complexity, made working with the ANTLR vari-
ant more cumbersome than with PEG.js.

This is not what broke the camel's back (or, perhaps more fittingly, the deer's antler),
though: Parsing performance turned out to be extremely poor when using ANTLR's Java-
Script target. After implementing only a fairly constrained subset of the UnicodeMath
grammar (located at ☁/antlr-experiment/UnicodeMath.g4), the UnicodeMath expression
a^b^c^d^e took almost 13 seconds to parse. You may verify this by opening ☁ /antlr-
experiment/index.html in any browser and clicking the button highlighted in Figure 7.

Based on some cursory tests I carried out with Chrome's profiler at the time, the issue
seemed to be rooted in the ALL(∗) algorithm consistently mispredicting which grammar
rules to try next, but I didn't explore this in detail.

For comparison, when using ANTLR's native Java target by means of invoking bash

1 2

https://github.com/antlr/antlr4/blob/master/doc/javascript-target.md
https://github.com/antlr/antlr4/blob/master/doc/unicode.md
https://github.com/antlr/antlr4/blob/master/doc/javascript-target.md
https://github.com/antlr/antlr4/blob/master/doc/unicode.md

Noah Doersing ⁓ 93

☁ /antlr-experiment/tree.sh "a^b^c^d^e" (note that this bash script is a thin wrapper
around ☁/antlr-experiment/Tree.java; refer to ☁/antlr-experiment/README.md for help
with setting things up), the same expression is parsed in around 460 ms, at least 300 ms of
which is parser generation overhead.

Figure 7: A simple UnicodeMath expression takes an eternity to parse when using ANTLR's
JavaScript backend.

Another point of comparison: At the time, my PEG.js-based parser supported the same
UnicodeMath subset and parsed the same expression instantly.

With ANTLR evidently leading me nowhere, I switched back to PEG.js thinking that if
UnicodeMathML couldn't support fancy math alphabets, I should at least be fast. This
eventually led me to the idea I refer to as astral mapping, described in Section 3.2.2, which
fixed the issue in practice.

This is also not entirely unrelated to emoji: some of them are encoded in the SMP.

file:///Users/noah/Dropbox/uni/Masterarbeit/unicodemathml/thesis/antlr.png

94 ⁓ Evaluation

⸻⸻
1 See https://www.unicode.org/emoji/charts/full-emoji-modifiers.html.
2 See https://blog.emojipedia.org/emoji-zwj-sequences-three-letters-many-possibilities/.
3 See https://unicode.org/Public/emoji/12.0/emoji-variation-sequences.txt.
4 In fact, while working on this, I realized that different browsers, text editors and operating systems differ wildly
in terms of completeness and correctness of their emoji rendering. Nobody seems to do it right, and whenever
anyone comes close, Unicode seems to add more emoji, along with more ways of combining existing ones. See
also https://www.unicode.org/reports/tr44/proposed.html#emoji-data.txt.
5 See https://unicode.org/Public/emoji/12.0/emoji-data.txt.
6 See https://www.unicode.org/emoji/charts/.

7.1.2 EMOJI

Supporting emoji as first-class operands in UnicodeMath (i.e., not only within plain text
zones) was one of my goals (even though there is no mention of emoji in the tech note). In
teaching and similar contexts, symbolic equations denoted using emoji can be rather
elegant.

However, emoji as they are encoded in Unicode are rather complicated:

There is no “Emoji” block – emoji are scattered across both the BMP and SMP.
Emoji can precede various modifiers which, while being separate code points,
modify the base character. For example, the emoji � is the result of concatenating
the five code points U+1F9D8 PERSON IN LOTUS POSITION, U+1F3FC EMOJI MODIFIER FITZPATRICK TYPE-3, U+200D ZERO
WIDTH JOINER, U+2640 FEMALE SIGN, and U+FE0F VARIATION SELECTOR-16, not all of which are categorized
as emoji on their own.
Symbols that are not categorized as emoji can display as emoji when paired with a
variation selector (and vice versa). For example, ☀ (U+2600 BLACK SUN WITH RAYS) turns into
the sun emoji ☀ when followed by U+FE0F VARIATION SELECTOR-16.

Before realizing how complex this would be if it was to be done correctly, I had started
writing a Python script (see Section 6.3) that parses one of the various emoji-related and
outputs 1. a mapping of astral emoji into the BMP's Private Use Area and 2. a correspond-
ing PEG.js rule. This list only includes simple one-code-point emoji that do display as
emoji by default, which limits its usefulness – implementing anything more complicated,
though, would negatively impact UnicodeMath parsing performance, which I didn't want
to risk for a relatively unimportant feature like this.

The previously mentioned constraints (see Section 4.1 and Section 4.19) relating to the gram-
mar rules αn and nn are also caused by the symbols comprising the relevant Unicode cat-
egories being scattered across multiple blocks, making it difficult to assemble regular ex-
pressions that are both performant and accurate.

1

2

3

4

5 6

https://www.unicode.org/emoji/charts/full-emoji-modifiers.html
https://blog.emojipedia.org/emoji-zwj-sequences-three-letters-many-possibilities/
https://unicode.org/Public/emoji/12.0/emoji-variation-sequences.txt
https://www.unicode.org/reports/tr44/proposed.html#emoji-data.txt
https://unicode.org/Public/emoji/12.0/emoji-data.txt
https://www.unicode.org/emoji/charts/
https://www.unicode.org/emoji/charts/full-emoji-modifiers.html
https://blog.emojipedia.org/emoji-zwj-sequences-three-letters-many-possibilities/
https://unicode.org/Public/emoji/12.0/emoji-variation-sequences.txt
https://unicode.org/Public/emoji/12.0/emoji-data.txt
https://www.unicode.org/emoji/charts/

Noah Doersing ⁓ 95

⸻⸻
1 Related: https://github.com/pegjs/pegjs/issues/623

7.1.3 ABSTRACT BOXES

In Section 3.7 of the tech note, Sargent introduces abstract boxes. They can supposedly be
used to change “alignment, spacing category, size style [sic], and other properties” [Sar-
gent16] based on a user-specified bit mask, however Sargent does not explain the precise
nature of these changes, instead just giving a table mapping bit mask values to rather in-
scrutable keys like “fXPositioning”, “fBreakable”, or “nSpaceDifferential”. (Other bit
masks are explained in the same manner, but the associated meanings are clear from con-
text in these cases.)

Due to the subtle nature of some of these changes, I was also unable to experimentally de-
termine what most of the possible bit mask values effect by testing them in Microsoft
Word.

For this reason, abstract boxes remain largely unimplemented in UnicodeMathML.

7.1.4 EQUATION BREAKING AND ALIGNMENT

As previously noted in Section Section 4.3, MathML's <malignmark> is not implemented by
any renderers I'm aware of. Although I've implemented them, equation arrays are made
somewhat useless by this.

For this reason – and because it would introduce more complexity to the grammar as well
as the translation step – I have opted not to implement inter-equation alignment as de-
tailed in Section 3.23 of the tech note, which is really just syntactic sugar for equation
arrays.

7.1.5 PARSING PERFORMANCE

As glad as I was after switching away from ANTLR's glacially slow JavaScript backend and
back to PEG.js – during continued expansion of the grammar to support more of Unicode-
Math's features and more accurately reproduce some of its edge cases, parsing perform-
ance took a steep turn downhill for some inputs. Eventually, when the grammar was ba-
sically “done”, expressions containing more than one level of bracketed subexpressions
were basically unusable. Even innocent-looking expressions like
took seconds until they were parsed, and expressions containing many absolute values
performed even worse (because opening and closing delimiter are equal for them), leading
to some initial pessimism on my side as to the applicability of UnicodeMathML in any
real-world context.

While I initially had a hard time finding purchase on this issue, I eventually addressed it –
aided by Chrome's built-in JavaScript profiler – by...

1. ...collapsing grammar rules consisting of long lists of literal (i.e., not referencing

1

https://github.com/pegjs/pegjs/issues/623

96 ⁓ Evaluation

other grammar rules) alternatives like "ⅅ" / "ⅆ" / "ⅇ" / "ⅈ" / "ⅉ" into regex-style
rules like [ⅅⅆⅇⅈⅉ] wherever possible. This had a modest, but noticeable effect on the
parse times of all UnicodeMath expressions I tested.

2. ...taking advantage of the fact that PEG.js deterministically tries alternatives in order.
For example, the sfactor rule was defined as follows at one point:

sfactor
 = enclosed
 / abstractbox
 / hbrack
 / root
 / function
 / text
 / sizeOverride
 / colored
 / comment
 / tt
 / primed
 / factorial
 / entity

Notice that the rule entity is listed at the very bottom. This is because PEG.js parsers
are greedy: Both primed and factorial can begin with entity*s (the rules listed above
them are all prefixed with a specific operator, so they are discarded quickly during
parsing if they do not match), so the more common *entity alternative can only be
tried after both of them have been tried and discarded. To circumvent this, I carefully
modified the grammar as follows:

sfactor
 = enclosed
 / abstractbox
 / hbrack
 / root
 / function
 / text
 / sizeOverride
 / colored
 / comment
 / tt
 / e:entity !("'" / "′" / "″" / "‴" / "⁗" / "‼" / "!") {return e} // ⚡ performance
optimization
 / primed
 / factorial
 /// entity // ⚡ performance optimization

Applying the same thinking to a number of other rules (marked by // ⚡ performance
optimization in ☁ /code/src/unicodemathml.pegjs) made the parser significantly
faster in pathological cases while at the same time not noticeably negatively affecting
other cases.

Performance teetered on the edge of acceptability, but was still not ideal: The 250 test ex-
pressions listed at the bottom of ☁ /code/markdeep-integration/markdeep.md.html still
took about 10 total seconds to parse successfully when pasted (sans delimiters) into the

Noah Doersing ⁓ 97

⸻⸻
1 I considered radically rewriting the grammar in order to left factor it (see
https://stackoverflow.com/questions/15194142/difference-between-left-factoring-and-left-recursion for
more information), but 1. this would make for a significantly less human-readable grammar and 2. would require
wide-reaching changes to the entire pipeline.
2 I tried removing my optimizations once I figured this out, but that had a negligible impact on parsing perform-
ance, so I decided to leave them in for now – for documentation purposes, if nothing else.
3 See http://atridas87.cat/GA/quickga.md.html.

UnicodeMathML playground running in Chrome and Firefox, and closer to 20 seconds in
Safari (this disparity is largely due to effective caching mechanisms built into Chrome's
and Firefox's JavaScript engines). But I could live with that.

However: While writing Section 2.7.1 of this thesis, I was going through PEG.js's documenta-
tion for one reason or another, noticing that there is a caching option I had not noticed be-
fore. When I configured the playground to enable this option, the parsing time for the 250
test expressions dropped to around half a second in Chrome and Firefox and one second in
Safari, about 20 times faster than sans caching.

Needless to say, “RTFM” is one of the central lessons I'm taking away from my work on
this thesis.

7.2 PERFORMANCE
The discussion in the previous section isn't all I want to note about UnicodeMathML's
performance:

Firstly, the parsing step is still the bottleneck, even with caching enabled: The time taken
by preprocessing, translation and pretty-printing is negligible. It's below 1 ms for all reas-
onable UnicodeMath expressions I've tried (the only times when these steps end up taking
multiple milliseconds is when they coincide with a garbage collection cycle).

As I've brought up in Section 5, the naïve integration of UnicodeMathML into Markdeep is
the fastest way of translating UnicodeMath zones contained in a document into MathML.
Because this method is wholly devoid of overhead (apart from the evaluation of a regular
expression and a loop through its matches), it is up to twice as fast as translating the same
UnicodeMath expressions in the UnicodeMathML playground, where a lot of extra work is
done in order to display various ASTs.

The slowest – but still acceptably fast – method is the “better” integration of Unicode-
MathML into Markdeep. It's also the only one that gives the user an insight into the trans-
lation progress. See Section 8.3 for ideas on how to speed it up.

Note that in order to compare performance of these three translation “pathways” on real-
world data (instead of the 250 test expressions located in ☁ /code/markdeep-
integration/markdeep.md.html or the 158 examples in this thesis), I manually translated
the first 253 mathematical expressions contained in “A quick and dirty guide to Geometric
Algebra” by Isaac Serrano Guasch from LaTeX into Markdeep – this guide is already a

1

2

3

https://stackoverflow.com/questions/15194142/difference-between-left-factoring-and-left-recursion
http://atridas87.cat/GA/quickga.md.html
http://atridas87.cat/GA/quickga.md.html

98 ⁓ Evaluation

Markdeep document, so I was able to drop in the UnicodeMathML integration in a matter
of seconds. My version of it is located at ☁/code/markdeep-integration/quickga.md.html.

7.3 EXTENSIBILITY AND MAINTAINABILITY
I've kept the structure of the parser and translator deliberately simple in order to aid fu-
ture adjustments – and indeed, that's what I'm planning to do: Since writing about extens-
ibility and maintainability implies that there's future work on the horizon, let's switch gears
to that.

Noah Doersing ⁓ 99

⸻⸻
1 It will be located at https://github.com/doersino/unicodemathml.
2 See https://wiki.developer.mozilla.org/en-US/docs/Web/MathML/Element/mfenced$history.
3 See https://github.com/mathml-refresh/mathml/issues/2.

8
FUTURE WORK
I'm indent on releasing UnicodeMathML as free software in the near future. Before going
ahead with this, I would like to address a number of issues – some of which have already
been mentioned – that I either didn't end up having enough time for or that weren't with-
in the scope of this thesis. They will be discussed in this chapter, along with some further-
fetched ideas that I likely won't implement.

8.1 UNICODEMATHML
The core of the work – parsing UnicodMath and translating it into MathML – works well
enough, but a few matters remain to be addressed:

Recall that the grammar rules αn and nn currently don't accept as many different
characters as prescribed by the tech note due to JavaScript regular expressions lacking
support for matching Unicode categories: I'd like to fix that.
I believe that I can improve parsing performance even more, either through careful
small-scale grammar adjustments or outright left factoring of the grammar.
Three days before submission of this thesis, I found out that the <mfenced> element
has recently been deprecated – apparently, any occurrence of it can be replaced with
an <mrow>s containing the delimited expression between two <mo>s containing the de-
limiters. More generally, the recently established

1

2

3

https://github.com/doersino/unicodemathml
https://wiki.developer.mozilla.org/en-US/docs/Web/MathML/Element/mfenced$history
https://github.com/mathml-refresh/mathml/issues/2
https://wiki.developer.mozilla.org/en-US/docs/Web/MathML/Element/mfenced$history
https://github.com/mathml-refresh/mathml/issues/2

100 ⁓ Future Work

⸻⸻
1 See https://www.w3.org/community/mathml4/.

MathML Refresh CG has been and will be making changes to MathML “so that it bet-
ter aligns with the current web environment, eases the burden on browser imple-
mentations, and increases support for assistive technology”. It's not yet clear when
and whether this upcoming version of MathML will be adopted by browsers, but any
changes will need to be reflected in UnicodeMathML's generated code.
As previously mentioned, I've implemented an experimental, rudimentary LaTeX code
generator that can be used in place of the MathML code transformation and pretty-
printing component. This work

1. provided the impetus for separating out the preprocessing step as described in
Section 3.2.4 – this separation isn't quite optimal yet, which I want to address in the
future; and

2. has not yet been finished – some UnicodeMath constructs are not yet supported
by my LaTeX-emitting translation step, largely due to time constraints and be-
cause it was merely intended as a proof of concept within the scope of this thesis.
I'd like to complete it, thus enabling the use of KaTeX for rendering instead of
MathJax.

As mentioned in Section 4.19, I aim to make the appearance of differential, exponential,
and imaginary symbols configurable.
Before releasing UnicodeMathML as open-source software, I will reexamine the
thoughts on modularization I laid out in Section 3.3.

8.2 UNICODEMATHML PLAYGROUND
Currently, the playground's instant preview feature is implemented synchronously. For
this reason, when previewing many different equations at once, the playground be-
comes unresponsive for a noticeable length of time as the translation is in progress –
and since translation is kicked off whenever the value of the input field changes, this
limits the user's typing speed. I'd like to “asynchronize” this similarly how the integ-
ration of UnicodeMath into Markdeep has been implemented.
Another playground-related bottleneck is the loading of the 1.5 MB large file
☁ /code/playground/charinfo.js. I think it's possible to compress the code point
metadata contained within this file to dramatically reduce its size.
It'd be neat to implement Microsoft-Office-style equation build-up in the playground,
but this would be a major undertaking.
A start would be to replace control words with their meanings as the user finishes
typing them them. In the same vein, I'd like to implement the hexadecimal input
method detailed in Section 4.3 of the tech note.
I've been thinking about what should be done if the user were to paste text containing
⁅delimited⁆ UnicodeMath expressions into the input filed – should only these expres-
sions be translated? Or should the pasted text be processed as a Markdeep or HTML
document? Currently, the playground can handle “raw” UnicodeMath input only.
User-configurable control words (essentially macros) would be useful – MathJax im-
plements this feature for LaTeX.

1

https://www.w3.org/community/mathml4/
https://www.w3.org/community/mathml4/

Noah Doersing ⁓ 101

⸻⸻
1 See https://github.com/akshayravikumar/TeXnique.

8.3 MARKDEEP INTEGRATION
Here, too, user-configurable control words would be useful.
As previously mentioned, repeated DOM manipulations during transformation of the
expressions contained within documents negatively impact performance. This could
be addressed by batching these DOM manipulations and, in addition, updating the
progress meter less frequently, perhaps once or twice a second instead of after trans-
lation of each expression.
Ultimately, one goal of this thesis is the merging of the integration-related changes to
Markdeep into “mainline” Markdeep. I intend to propose this to Morgan McGuire
once UnicodeMathML has been made available as open-source software.
Some folks have strong opinions on monospaced fonts, so I will make the font used in
typewriter text mode configurable.

8.4 GRAB BAG
While it was not a priority within the scope of this thesis, I will explore how to embed
UnicodeMathML into server-side programs – there are, of course, use cases where it's
more efficient to translate UnicodeMath into MathML (and perhaps render it at the
same time) just once instead of on every page load.
Server-side caching of translated UnicodeMath expressions might be a helpful feature
in certain contexts, too.
“TeXnique” is a LaTeX speed-typesetting game – forking it and turning it into a Uni-
codeMath learning tool seems doable (once better input methods have been imple-
mented). Finding an equally punny name seems more difficult, however.
I will continue maintaining markdeep-slides and markdeep-diagram-drawing-board
along with their new siblings markdeep-thesis and unicodemathml.

Master's theses are supposed to have the author draw conclusions at the end. I suspect
that any actionable conclusions have been discussed in sufficient detail in the previous
two chapters, and a summary of my work can be found in both the abstract and the intro-
duction, so all that's left to say is:

🐟 🐠 🐡

1

https://github.com/akshayravikumar/TeXnique
https://github.com/akshayravikumar/TeXnique

102 ⁓ Future Work

Noah Doersing ⁓ 103

BIBLIOGRAPHY
All web sources were accessed on November 30, 2019.

[Beeton16] Barbara Beeton, Richard Palais. 2016. “Communication of Mathematics with
TEX”. In Visual Language, August 2016. http://tug.org/pubs/vislang-
16/article.pdf

[Beeton17] Barbara Beeton, Asmus Freytag, Murray Sargent III. 2017. Unicode Technical Re-
port #25: Unicode Support for Mathematics.
https://www.unicode.org/reports/tr25/tr25-15.pdf

[Carlisle03] David Carlisle et al. 2003. Mathematical Markup Language (MathML) Version 2.0
(Second Edition). W3C Recommendation. https://www.w3.org/TR/MathML2/

[Davis06] Mark Davis. 2006. Foreword. In: The Unicode Standard, Version 5.0. Addison-
Wesley. Boston, Massachusetts.
https://www.unicode.org/versions/Unicode5.0.0/Foreword.pdf

[Ford04] Bryan Ford. 2004. Parsing expression grammars: a recognition-based syntactic
foundation. In SIGPLAN Notices, Volume 39, Issue 1, 111-122.
https://doi.org/10.1145/982962.964011

[Gruber04] John Gruber. 2004. Markdown: Syntax.
https://daringfireball.net/projects/markdown/syntax

[Igalia19] Igalia (no author listed). 2019. MathML and Browsers.
https://mathml.igalia.com/news/2019/08/28/mathml-and-browsers/

[Kajiya86] James T. Kajiya. 1986. The Rendering Equation. In Proceedings of Computer
Graphics and Interactive Techniques (SIGGRAPH '86), ACM, 143-150.
http://dx.doi.org/10.1145/15922.15902

[Kerninghan75] Brian W. Kernighan, Lorinda L. Cherry. 1975. A system for typesetting math-
ematics. In Communications of the ACM, Volume 18, Issue 3, 151-157.
https://research.swtch.com/eqn.pdf

[Knuth81] Donald E. Knuth, Michael F. Plass. 1981. Breaking paragraphs into lines. In Soft-
ware: Practice and Experience, Volume 11, Issue 11, 1119-1184.
https://doi.org/10.1002/spe.4380111102

[Knuth99] Donald E. Knuth. 1999. Digital Typography. CSLI Publications. Stanford,
California.

[McGuire19] Morgan McGuire. 2019. Markdeep. https://casual-effects.com/markdeep/
[Parr14] Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL(*) parsing: the

power of dynamic analysis. In ACM SIGPLAN Notices, Volume 49, Issue 10,

http://tug.org/pubs/vislang-16/article.pdf
https://www.unicode.org/reports/tr25/tr25-15.pdf
https://www.w3.org/TR/MathML2/
https://www.unicode.org/versions/Unicode5.0.0/Foreword.pdf
https://doi.org/10.1145/982962.964011
https://daringfireball.net/projects/markdown/syntax
https://mathml.igalia.com/news/2019/08/28/mathml-and-browsers/
http://dx.doi.org/10.1145/15922.15902
https://research.swtch.com/eqn.pdf
https://doi.org/10.1002/spe.4380111102
https://casual-effects.com/markdeep/

104 ⁓ Future Work

579-598. https://www.antlr.org/papers/allstar-techreport.pdf
[Prusty15] Narayan Prusty. 2015. Learning ECMAScript 6. Packt Publishing. Birmingham,

United Kingdom.
[Sargent06] Murray Sargent III. 2006. How I got into technical WP.

https://blogs.msdn.microsoft.com/murrays/2006/09/20/how-i-got-into-
technical-wp/

[Sargent07] Murray Sargent III. 2007. Two Linear Formats Interoperable with MathML. In
Mathematical User-Interfaces Conferences 2007.
http://www.cermat.org/events/MathUI/07/proceedings/Sargent-TwoSyntaxes-
MathUI07.pdf

[Sargent10] Murray Sargent III. 2010. Linear Format Notations for Mathematics.
https://blogs.msdn.microsoft.com/murrays/2010/08/30/linear-format-
notations-for-mathematics/

[Sargent11] Murray Sargent III. 2011. Two Math Typography Niceties.
https://blogs.msdn.microsoft.com/murrays/2011/04/30/two-math-typography-
niceties/

[Sargent16] Murray Sargent III. 2016. Unicode Technical Note 28: UnicodeMath: A Nearly
Plain-Text Encoding of Mathematics. Version 3.1.
https://www.unicode.org/notes/tn28/tn28-5.html

[Sargent16a] Murray Sargent III. 2016. UnicodeMath.
https://blogs.msdn.microsoft.com/murrays/2016/09/07/unicodemath/

[Sargent16b] Murray Sargent III. 2016. High-Quality Editing and Display of Mathematical
Text in Office 2007.
https://blogs.msdn.microsoft.com/murrays/2006/09/13/high-quality-editing-
and-display-of-mathematical-text-in-office-2007/

[Sargent16c] Murray Sargent III. 2016. UnicodeMath Version 3.1.
https://blogs.msdn.microsoft.com/murrays/2016/11/30/unicodemath-version-
3-1/

[Sargent19] Murray Sargent III. 2019. Using Math Alphanumerics in Code and Web Pages.
https://blogs.msdn.microsoft.com/murrays/2019/02/27/using-math-
alphanumerics-in-code-and-web-pages/

[Siracusa11] John Siracusa and Dan Benjamin. 2011. The Mouse is Not a Finger. In Hypercrit-
ical. https://5by5.tv/hypercritical/3

[Whistler19] Ken Whistler, Laurențiu Iancu. 2019. Unicode Standard Annex #44: Unicode
Character Database. Revision 24. https://www.unicode.org/reports/tr44/tr44-
24.html

[Wolfram00] Stephen Wolfram. 2000. Mathematical Notation: Past and Future.
https://www.stephenwolfram.com/publications/mathematical-notation-past-
future/

https://www.antlr.org/papers/allstar-techreport.pdf
https://blogs.msdn.microsoft.com/murrays/2006/09/20/how-i-got-into-technical-wp/
http://www.cermat.org/events/MathUI/07/proceedings/Sargent-TwoSyntaxes-MathUI07.pdf
https://blogs.msdn.microsoft.com/murrays/2010/08/30/linear-format-notations-for-mathematics/
https://blogs.msdn.microsoft.com/murrays/2011/04/30/two-math-typography-niceties/
https://www.unicode.org/notes/tn28/tn28-5.html
https://blogs.msdn.microsoft.com/murrays/2016/09/07/unicodemath/
https://blogs.msdn.microsoft.com/murrays/2006/09/13/high-quality-editing-and-display-of-mathematical-text-in-office-2007/
https://blogs.msdn.microsoft.com/murrays/2016/11/30/unicodemath-version-3-1/
https://blogs.msdn.microsoft.com/murrays/2019/02/27/using-math-alphanumerics-in-code-and-web-pages/
https://5by5.tv/hypercritical/3
https://www.unicode.org/reports/tr44/tr44-24.html
https://www.stephenwolfram.com/publications/mathematical-notation-past-future/

Noah Doersing ⁓ 105

SELBSTSTÄNDIGKEITSERKLÄRUNG
Hiermit versichere ich, dass ich diese schriftliche Abschlus-
sarbeit selbstständig verfasst habe, keine anderen als die an-
gegebenen Hilfsmittel und Quellen benutzt habe und alle
wörtlich oder sinngemäß aus anderen Werken übernommenen
Aussagen als solche gekennzeichnet habe.

Ort, Datum, Unterschrift

